Suppr超能文献

可解释的机器学习模型可预测机器人辅助根治性前列腺切除术后1年腹股沟疝风险。

Interpretable machine learning model predicts 1-year inguinal hernia risk after robot-assisted radical prostatectomy.

作者信息

Yu Weidong, Ma You, Wu Junchao, Zhang Meng, Yang Cheng

机构信息

Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.

Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.

出版信息

J Robot Surg. 2025 Sep 5;19(1):564. doi: 10.1007/s11701-025-02723-5.

Abstract

Inguinal hernia represents a clinically significant yet underreported complication of robot-assisted radical prostatectomy (RARP) for localized prostate cancer, with a notably high incidence within the first postoperative year. Despite its adverse impact on quality of life and potential for severe sequelae, predictive tools for this outcome remain limited. To develop and validate the first machine learning (ML)-based clinical prediction model for inguinal hernia within 1 year after RARP, leveraging explainable artificial intelligence (AI) techniques for clinical interpretability. This retrospective study analyzed localized prostate cancer patients who underwent RARP between June 1, 2021 and May 1, 2023 at our center. Least absolute shrinkage and selection operator (LASSO) regression identified five key predictors from multiple clinical parameters. Five ML algorithms were developed and evaluated on a 70:30 training-test split. Model performance was assessed via area under the curve (AUC), accuracy, specificity, and decision curve analysis (DCA). SHapley Additive exPlanations (SHAP) methodology provided interpretable feature attribution. The final analysis included 652 eligible patients. Extreme gradient boosting (XGBoost) demonstrated superior discriminative ability, with an AUC of 0.833 (95% CI: 0.770-0.895) in the validation set and 0.791 (95% CI: 0.734-0.848) in the test set. SHAP analysis identified five critical predictors ranked by impact: age, body mass index (BMI), preoperative albumin level, T stage, and history of abdominal surgery. This study established the first ML-driven predictive model for post-RARP inguinal hernia, with XGBoost demonstrating optimal performance. High-risk patients identified by the model warrant personalized proactive interventions.

摘要

腹股沟疝是局限性前列腺癌机器人辅助根治性前列腺切除术(RARP)一种具有临床意义但报告不足的并发症,在术后第一年发病率显著较高。尽管其对生活质量有不利影响且有严重后遗症的可能性,但针对这一结果的预测工具仍然有限。为了开发并验证首个基于机器学习(ML)的RARP术后1年内腹股沟疝临床预测模型,利用可解释人工智能(AI)技术实现临床可解释性。这项回顾性研究分析了2021年6月1日至2023年5月1日在我们中心接受RARP的局限性前列腺癌患者。最小绝对收缩和选择算子(LASSO)回归从多个临床参数中确定了五个关键预测因素。开发了五种ML算法,并在70:30的训练-测试分割上进行评估。通过曲线下面积(AUC)、准确性、特异性和决策曲线分析(DCA)评估模型性能。SHapley加法解释(SHAP)方法提供了可解释的特征归因。最终分析纳入了652例符合条件的患者。极端梯度提升(XGBoost)显示出卓越判别能力,在验证集中AUC为0.833(95%CI:0.770-0.895),在测试集中为0.791(95%CI:0.734-0.848)。SHAP分析确定了按影响排名的五个关键预测因素:年龄、体重指数(BMI)、术前白蛋白水平、T分期和腹部手术史。本研究建立了首个ML驱动的RARP术后腹股沟疝预测模型,XGBoost表现出最佳性能。该模型识别出的高危患者需要进行个性化的积极干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7920/12413417/c6e610ac466e/11701_2025_2723_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验