使用多阶段网络方法进行前列腺磁共振图像分割。

Prostate MR image segmentation using a multi-stage network approach.

作者信息

Jacobson Lars E O, Bader-El-Den Mohamed, Maurya Lalit, Hopgood Adrian A, Tamma Vincenzo, Masum Shamsul K, Prendergast David J, Osborn Peter

机构信息

School of Computing, University of Portsmouth, Portsmouth, UK.

Faculty of Technology, University of Portsmouth, Portsmouth, UK.

出版信息

Int Urol Nephrol. 2025 Sep 5. doi: 10.1007/s11255-025-04763-0.

Abstract

Prostate cancer (PCa) remains one of the most prevalent cancers among men, with over 1.4 million new cases and 375,304 deaths reported globally in 2020. Current diagnostic approaches, such as prostate-specific antigen (PSA) testing and trans-rectal ultrasound (TRUS)-guided biopsies, are often Limited by low specificity and accuracy. This study addresses these Limitations by leveraging deep learning-based image segmentation techniques on a dataset comprising 61,119 T2-weighted MR images from 1151 patients to enhance PCa detection and characterisation. A multi-stage segmentation approach, including one-stage, sequential two-stage, and end-to-end two-stage methods, was evaluated using various deep learning architectures. The MultiResUNet model, integrated into a multi-stage segmentation framework, demonstrated significant improvements in delineating prostate boundaries. The study utilised a dataset of over 61,000 T2-weighted magnetic resonance (MR) images from more than 1100 patients, employing three distinct segmentation strategies: one-stage, sequential two-stage, and end-to-end two-stage methods. The end-to-end approach, leveraging shared feature representations, consistently outperformed other methods, underscoring its effectiveness in enhancing diagnostic accuracy. These findings highlight the potential of advanced deep learning architectures in streamlining prostate cancer detection and treatment planning. Future work will focus on further optimisation of the models and assessing their generalisability to diverse medical imaging contexts.

摘要

前列腺癌(PCa)仍然是男性中最常见的癌症之一,2020年全球报告的新病例超过140万例,死亡375304例。当前的诊断方法,如前列腺特异性抗原(PSA)检测和经直肠超声(TRUS)引导下的活检,往往受到低特异性和准确性的限制。本研究通过对来自1151名患者的61119张T2加权磁共振图像数据集运用基于深度学习的图像分割技术,以提高前列腺癌的检测和特征描述,从而解决这些限制。使用各种深度学习架构评估了一种多阶段分割方法,包括单阶段、顺序两阶段和端到端两阶段方法。集成到多阶段分割框架中的MultiResUNet模型在勾勒前列腺边界方面显示出显著改进。该研究使用了来自1100多名患者的超过61000张T2加权磁共振(MR)图像数据集,采用了三种不同的分割策略:单阶段、顺序两阶段和端到端两阶段方法。利用共享特征表示的端到端方法始终优于其他方法,突出了其在提高诊断准确性方面的有效性。这些发现凸显了先进深度学习架构在简化前列腺癌检测和治疗规划方面的潜力。未来的工作将集中于进一步优化模型,并评估它们在不同医学成像背景下的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索