Han Narae, Roh Youngchae, Sung Ha-Jun, Kang Minseung, Won Jongun, Han Joo-Hun, Jang Younjin, Yang Jee-Eun, Kim Sangwook, Kim Sangbum
Department of Material Sciences and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea.
ACS Appl Mater Interfaces. 2025 Sep 5. doi: 10.1021/acsami.5c13069.
A nanometer-scale multilayer gate insulator (GI) engineering strategy is introduced to simultaneously enhance the on-current and bias stability of amorphous InGaZnO thin-film transistors (a-IGZO TFTs). Atomic layer deposition supercycle modifications employ alternating layers of AlO, TiO, and SiO to optimize the gate-oxide stack. Each GI material is strategically selected for complementary functionalities: AlO improves the interfacial quality at both the GI/semiconductor and GI/metal interfaces, thereby enhancing device stability and performance; TiO increases the overall dielectric constant; and SiO suppresses leakage current by serving as a high-energy barrier between AlO and TiO. Layer ordering, particularly separating SiO and TiO with AlO, is crucial for suppressing charge trapping and defect-state density, as verified by electrical performance comparisons of the fabricated metal-insulator-metal capacitors and thin-film transistors (TFTs). The optimized multilayer GI demonstrates reduced insulator leakage current, roughly a 1.76× increase in on-current relative to a single-layer AlO GI, a 1.47× mobility increase, and enhanced bias stability with a -5 mV threshold-voltage shift under positive bias stress. Beyond device-level improvements, the cycling endurance of the 6-transistor 1-capacitor synaptic circuit is assessed, demonstrating faster operation and enhanced weight-update cycling stability with the engineered GI compared to conventional designs. This optimization addresses the inherent mobility-reliability trade-off in IGZO TFT fabrication, enabling improved performance for very-large-scale integration circuits and neuromorphic applications.
引入了一种纳米级多层栅极绝缘体(GI)工程策略,以同时提高非晶铟镓锌氧化物薄膜晶体管(a-IGZO TFT)的导通电流和偏置稳定性。原子层沉积超循环修饰采用AlO、TiO和SiO的交替层来优化栅极氧化物堆叠。每种GI材料都经过精心挑选以实现互补功能:AlO改善了GI/半导体和GI/金属界面处的界面质量,从而提高了器件的稳定性和性能;TiO提高了整体介电常数;而SiO通过在AlO和TiO之间充当高能垒来抑制漏电流。层序排列,特别是用AlO分隔SiO和TiO,对于抑制电荷俘获和缺陷态密度至关重要,这通过对制备的金属-绝缘体-金属电容器和薄膜晶体管(TFT)的电学性能比较得到了验证。优化后的多层GI表现出降低的绝缘体漏电流,相对于单层AlO GI,导通电流大约增加了1.76倍,迁移率提高了1.47倍,并且在正偏压应力下阈值电压偏移为-5 mV时具有增强的偏置稳定性。除了器件级的改进,还评估了6晶体管1电容器突触电路的循环耐久性,结果表明与传统设计相比,采用工程化GI的电路具有更快的运行速度和增强的权重更新循环稳定性。这种优化解决了IGZO TFT制造中固有的迁移率-可靠性权衡问题,为超大规模集成电路和神经形态应用带来了性能提升。