Suppr超能文献

一种用于先天性巨结肠症的新型基于人工智能的诊断模型的开发与临床评估。

Development and clinical assessment of a novel AI-based diagnostic model for Hirschsprung's disease.

作者信息

Akay Mustafa Alper, Tatar Ozan Can, Metin Semih, Tatar Elif, Varlıklı Onursal, Yıldız Gülşen Ekingen

机构信息

Department of Pediatric Surgery, School of Medicine, Kocaeli University, Izmit, Turkey.

Department of General Surgery, School of Medicine, Tip Fakultesi, Kocaeli University, Umuttepe, 41000, Izmit, Turkey.

出版信息

Updates Surg. 2025 Sep 5. doi: 10.1007/s13304-025-02284-0.

Abstract

This study aimed to develop an AI-based diagnostic model for Hirschsprung's disease (HD) using deep learning on contrast enema (CE) images, with the goal of improving diagnostic accuracy while reducing invasiveness. The dataset included 725 CE images from histopathologically confirmed HD patients from 2013 to 2022. Employing Python and PyTorch, a deep learning model based on the YOLOv8 algorithm was trained and validated, emphasizing key metrics like mean average precision (mAP), precision, recall, and F1 score. This model exhibited high precision (0.87477) and recall (0.87317), with an mAP50 score of 0.91. External validation showed promising results, including a sensitivity of 86.96%, a specificity of 72.22%, and an overall accuracy of 80.49%. This AI model offers a less-invasive and accurate alternative to traditional HD diagnostics, especially beneficial for initial screening in pediatric gastroenterology, with the potential to enhance healthcare diagnostics through AI integration.

摘要

本研究旨在利用对比灌肠(CE)图像上的深度学习开发一种基于人工智能的先天性巨结肠(HD)诊断模型,以提高诊断准确性并降低侵入性。该数据集包括2013年至2022年来自组织病理学确诊的HD患者的725张CE图像。使用Python和PyTorch,基于YOLOv8算法训练并验证了一个深度学习模型,重点关注平均精度均值(mAP)、精度、召回率和F1分数等关键指标。该模型表现出高精度(0.87477)和召回率(0.87317),mAP50分数为0.91。外部验证显示出有前景的结果,包括灵敏度86.96%、特异性72.22%和总体准确率80.49%。这种人工智能模型为传统HD诊断提供了一种侵入性较小且准确的替代方法,尤其有利于儿科胃肠病学的初步筛查,具有通过人工智能整合增强医疗诊断的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验