Plant Genome. 2019 Jun;12(2). doi: 10.3835/plantgenome2018.10.0082.
Genomic prediction has become an increasingly popular tool for hybrid performance evaluation in plant breeding mainly because that it can reduce cost and accelerate a breeding program. In this study, we propose a systematic procedure to predict hybrid performance using a genomic selection (GS) model that takes both additive and dominance marker effects into account. We first demonstrate the advantage of the additive-dominance effects model over the only additive effects model through a simulation study. Based on the additive-dominance model, we predict genomic estimated breeding values (GEBVs) for individual hybrid combinations and their parental lines. The GEBV-based specific combining ability (SCA) for each hybrid and general combining ability (GCA) for its parental lines are then derived to quantify the degree of midparent heterosis (MPH) or better-parent heterosis (BPH) of the hybrid. Finally, we estimate the variance components resulting from additive and dominance gene action effects and heritability using a genomic best linear unbiased predictor (g-BLUP) model. These estimates are used to justify the results of the genomic prediction study. A pumpkin ( spp.) data set is given to illustrate the provided procedure. The data set consists of 320 parental lines with 61,179 collected single nucleotide polymorphism (SNP) markers; 119, 120, and 120 phenotypic values of hybrids on three quantitative traits within maxima Duchesne; and 89, 111, and 90 phenotypic values of hybrids on the same three quantitative traits within Dechesne.
基因组预测已成为植物育种中杂种表现评估的一种越来越流行的工具,主要是因为它可以降低成本并加速育种计划。在本研究中,我们提出了一种系统的程序,通过同时考虑加性和显性标记效应的基因组选择(GS)模型来预测杂种表现。我们首先通过模拟研究证明了加性-显性效应模型相对于仅加性效应模型的优势。基于加性-显性模型,我们预测了个体杂种组合及其亲本系的基因组估计育种值(GEBV)。然后,基于 GEBV 衍生出每个杂种的特殊配合力(SCA)和其亲本系的一般配合力(GCA),以量化杂种的中亲优势(MPH)或更好亲本优势(BPH)程度。最后,我们使用基因组最佳线性无偏预测(g-BLUP)模型估计由加性和显性基因作用效应和遗传力产生的方差分量。这些估计用于证明基因组预测研究的结果。给出了一个南瓜( spp.)数据集来说明所提供的程序。该数据集包含 320 个亲本系,有 61179 个收集的单核苷酸多态性(SNP)标记;在 Duchesne 内的三个数量性状上有 119、120 和 120 个杂种表型值;在 Dechesne 内的相同三个数量性状上有 89、111 和 90 个杂种表型值。