文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于搜索和优化的元启发式算法的详尽综述:分类、应用及开放挑战。

An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges.

作者信息

Rajwar Kanchan, Deep Kusum, Das Swagatam

机构信息

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India.

Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, West Bengal 700108 India.

出版信息

Artif Intell Rev. 2023 Apr 9:1-71. doi: 10.1007/s10462-023-10470-y.


DOI:10.1007/s10462-023-10470-y
PMID:37362893
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10103682/
Abstract

As the world moves towards industrialization, optimization problems become more challenging to solve in a reasonable time. More than 500 new metaheuristic algorithms (MAs) have been developed to date, with over 350 of them appearing in the last decade. The literature has grown significantly in recent years and should be thoroughly reviewed. In this study, approximately 540 MAs are tracked, and statistical information is also provided. Due to the proliferation of MAs in recent years, the issue of substantial similarities between algorithms with different names has become widespread. This raises an essential question: can an optimization technique be called 'novel' if its search properties are modified or almost equal to existing methods? Many recent MAs are said to be based on 'novel ideas', so they are discussed. Furthermore, this study categorizes MAs based on the number of control parameters, which is a new taxonomy in the field. MAs have been extensively employed in various fields as powerful optimization tools, and some of their real-world applications are demonstrated. A few limitations and open challenges have been identified, which may lead to a new direction for MAs in the future. Although researchers have reported many excellent results in several research papers, review articles, and monographs during the last decade, many unexplored places are still waiting to be discovered. This study will assist newcomers in understanding some of the major domains of metaheuristics and their real-world applications. We anticipate this resource will also be useful to our research community.

摘要

随着世界迈向工业化,要在合理时间内解决优化问题变得更具挑战性。迄今为止,已开发出500多种新的元启发式算法(MA),其中超过350种是在过去十年出现的。近年来,相关文献大量增加,需要进行全面综述。在本研究中,追踪了约540种MA,并提供了统计信息。由于近年来MA的大量涌现,不同名称的算法之间存在大量相似性的问题已普遍存在。这就引出了一个关键问题:如果一种优化技术的搜索特性被修改或几乎等同于现有方法,它还能被称为“新颖的”吗?许多最近的MA据说基于“新颖的想法”,因此对它们进行了讨论。此外,本研究根据控制参数的数量对MA进行分类,这是该领域一种新的分类法。MA作为强大的优化工具已在各个领域广泛应用,并展示了它们的一些实际应用。已识别出一些局限性和开放挑战,这可能为MA未来的发展指明新方向。尽管研究人员在过去十年的多篇研究论文、综述文章和专著中报告了许多出色的成果,但仍有许多未探索的领域有待发现。本研究将帮助新手了解元启发式算法的一些主要领域及其实际应用。我们预计这一资源对我们的研究群体也将有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/a606e485b543/10462_2023_10470_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/08985bd23953/10462_2023_10470_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/3b5b9b9c7551/10462_2023_10470_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/12655213779d/10462_2023_10470_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/841e670b95eb/10462_2023_10470_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/d2a1340e438d/10462_2023_10470_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/f6368560de63/10462_2023_10470_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/54103d718cb4/10462_2023_10470_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/a606e485b543/10462_2023_10470_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/08985bd23953/10462_2023_10470_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/3b5b9b9c7551/10462_2023_10470_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/12655213779d/10462_2023_10470_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/841e670b95eb/10462_2023_10470_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/d2a1340e438d/10462_2023_10470_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/f6368560de63/10462_2023_10470_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/54103d718cb4/10462_2023_10470_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5071/10103682/a606e485b543/10462_2023_10470_Fig8_HTML.jpg

相似文献

[1]
An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges.

Artif Intell Rev. 2023-4-9

[2]
A novel metaheuristic algorithm inspired by COVID-19 for real-parameter optimization.

Neural Comput Appl. 2023

[3]
A review of recent advances in quantum-inspired metaheuristics.

Evol Intell. 2022-10-23

[4]
A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges.

Arch Comput Methods Eng. 2023

[5]
Applications of nature-inspired metaheuristic algorithms for tackling optimization problems across disciplines.

Sci Rep. 2024-4-24

[6]
Recent advances in use of bio-inspired jellyfish search algorithm for solving optimization problems.

Sci Rep. 2022-11-10

[7]
Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems.

Biomimetics (Basel). 2023-10-23

[8]
A novel chaotic transient search optimization algorithm for global optimization, real-world engineering problems and feature selection.

PeerJ Comput Sci. 2023-8-22

[9]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[10]
Optimizing Machine Learning Algorithms for Landslide Susceptibility Mapping along the Karakoram Highway, Gilgit Baltistan, Pakistan: A Comparative Study of Baseline, Bayesian, and Metaheuristic Hyperparameter Optimization Techniques.

Sensors (Basel). 2023-8-1

引用本文的文献

[1]
Optimising parent selection in plant breeding: comparing metaheuristic algorithms for genotype building.

Theor Appl Genet. 2025-9-6

[2]
A Novel Exploration Stage Approach to Improve Crayfish Optimization Algorithm: Solution to Real-World Engineering Design Problems.

Biomimetics (Basel). 2025-6-19

[3]
Performance improvement of DC motor control system using PID controller with Kookaburra and Red Panda optimization algorithm.

Sci Rep. 2025-6-6

[4]
A Wireless Sensor Network-Based Combustible Gas Detection System Using PSO-DBO-Optimized BP Neural Network.

Sensors (Basel). 2025-5-16

[5]
Application of Metaheuristics for Optimizing Predictive Models in iHealth: A Case Study on Hypotension Prediction in Dialysis Patients.

Biomimetics (Basel). 2025-5-12

[6]
Artificial Intelligence Approaches to Modeling Equivalent Circulating Density for Improved Drilling Mud Management.

ACS Omega. 2025-4-28

[7]
Multi objective elk herd optimization for efficient structural design.

Sci Rep. 2025-4-6

[8]
An integrative TLBO-driven hybrid grey wolf optimizer for the efficient resolution of multi-dimensional, nonlinear engineering problems.

Sci Rep. 2025-4-2

[9]
Cognitive fuzzy logic-integrated energy management for self-sustaining hybrid renewable microgrids.

Sci Rep. 2025-3-22

[10]
Electric Eel foraging optimization based control design of islanded microgrid.

Sci Rep. 2025-3-9

本文引用的文献

[1]
Improved deep convolutional neural networks using chimp optimization algorithm for Covid19 diagnosis from the X-ray images.

Expert Syst Appl. 2023-3-1

[2]
An aphid inspired metaheuristic optimization algorithm and its application to engineering.

Sci Rep. 2022-10-27

[3]
A Systematic Review on Particle Swarm Optimization Towards Target Search in The Swarm Robotics Domain.

Arch Comput Methods Eng. 2022-10-11

[4]
Multiclass feature selection with metaheuristic optimization algorithms: a review.

Neural Comput Appl. 2022

[5]
A new human-based metahurestic optimization method based on mimicking cooking training.

Sci Rep. 2022-9-1

[6]
COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle.

Neural Comput Appl. 2022

[7]
The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems.

Sci Rep. 2022-6-29

[8]
A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process.

Sci Rep. 2022-6-15

[9]
A new optimization algorithm based on mimicking the voting process for leader selection.

PeerJ Comput Sci. 2022-5-13

[10]
Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications.

Sensors (Basel). 2022-1-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索