Suppr超能文献

基于Transformer的心电图分类用于心律失常的早期检测。

Transformer-based ECG classification for early detection of cardiac arrhythmias.

作者信息

Ikram Sunnia, Ikram Amna, Singh Harvinder, Ali Awan Malik Daler, Naveed Sajid, De la Torre Díez Isabel, Gongora Henry Fabian, Candelaria Chio Montero Thania

机构信息

Department of Software Engineering, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.

Faculty of Computing, The Govt Sadiq College Women University, Bahawalpur, Pakistan.

出版信息

Front Med (Lausanne). 2025 Aug 22;12:1600855. doi: 10.3389/fmed.2025.1600855. eCollection 2025.

Abstract

Electrocardiogram (ECG) classification plays a critical role in early detection and trocardiogram (ECG) classification plays a critical role in early detection and monitoring cardiovascular diseases. This study presents a Transformer-based deep learning framework for automated ECG classification, integrating advanced preprocessing, feature selection, and dimensionality reduction techniques to improve model performance. The pipeline begins with signal preprocessing, where raw ECG data are denoised, normalized, and relabeled for compatibility with attention-based architectures. Principal component analysis (PCA), correlation analysis, and feature engineering is applied to retain the most informative features. To assess the discriminative quality of the selected features, t-distributed stochastic neighbor embedding (t-SNE) is used for visualization, revealing clear class separability in the transformed feature space. The refined dataset is then input to a Transformer- based model trained with optimized loss functions, regularization strategies, and hyperparameter tuning. The proposed model demonstrates strong performance on the MIT-BIH benchmark dataset, showing results consistent with or exceeding prior studies. However, due to differences in datasets and evaluation protocols, these comparisons are indicative rather than conclusive. The model effectively classifies ECG signals into categories such as Normal, atrial premature contraction (APC), ventricular premature contraction (VPC), and Fusion beats. These results underscore the effectiveness of Transformer-based models in biomedical signal processing and suggest potential for scalable, automated ECG diagnostics. However, deployment in real-time or resource-constrained settings will require further optimization and validation.

摘要

心电图(ECG)分类在心血管疾病的早期检测和监测中起着关键作用。本研究提出了一种基于Transformer的深度学习框架用于自动心电图分类,集成了先进的预处理、特征选择和降维技术以提高模型性能。流程从信号预处理开始,对原始心电图数据进行去噪、归一化并重新标记,以使其与基于注意力的架构兼容。应用主成分分析(PCA)、相关分析和特征工程来保留最具信息性的特征。为了评估所选特征的判别质量,使用t分布随机邻域嵌入(t-SNE)进行可视化,揭示了变换后的特征空间中清晰的类别可分性。然后将经过优化的数据集输入到基于Transformer的模型中,该模型通过优化的损失函数、正则化策略和超参数调整进行训练。所提出的模型在MIT-BIH基准数据集上表现出强大的性能,结果与先前的研究一致或超过先前的研究。然而,由于数据集和评估协议的差异,这些比较只是指示性的而非决定性的。该模型能有效地将心电图信号分类为正常、房性早搏(APC)、室性早搏(VPC)和融合波等类别。这些结果强调了基于Transformer的模型在生物医学信号处理中的有效性,并表明了可扩展的自动心电图诊断的潜力。然而,在实时或资源受限的环境中进行部署将需要进一步的优化和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/225c/12411431/d46713b68229/fmed-12-1600855-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验