Suppr超能文献

一种用于玉米-大豆间作系统产量预测的模糊优化混合集成模型。

A fuzzy-optimized hybrid ensemble model for yield prediction in maize-soybean intercropping system.

作者信息

Ikram Amna, Ikram Sunnia, El-Kenawy El-Sayed M, Hussain Adil, Alharbi Amal H, Eid Marwa M

机构信息

Department of Computer Science and IT, Government Sadiq College Women University, Bahawalpur, Pakistan.

Department of Software Engineering, The Islamia University, Bahawalpur, Pakistan.

出版信息

Front Plant Sci. 2025 May 22;16:1567679. doi: 10.3389/fpls.2025.1567679. eCollection 2025.

Abstract

Maize-soybean intercropping is a sustainable farming practice that optimizes resource use efficiency and improves yield potential. Accurate yield prediction is essential for effective agricultural management in such systems. This study proposes a Fuzzy-Optimized Hybrid Ensemble Model (FOHEM), integrating stacked ensemble machine learning algorithms with a fuzzy inference system (FIS) to improve yield prediction. The dataset includes four intercropping treatments: SM (sole maize), SS (sole soybean), 2M2S (two rows of maize with alternating two rows of soybean), and 2M3S (two rows of maize with alternating three rows of soybean). Key input features include environmental factors, soil nutrients, and management practices across different treatments. The FOHEM framework integrates the outputs of the FIS with a stacked ensemble model comprising Random Forest (RF), Categorical Boosting (CatBoost), and Extreme Learning Machine (ELM)). A genetic algorithm (GA) dynamically adjusts the weights between FIS and the ensemble model, optimizing final prediction while enhancing accuracy and robustness. Additionally, LIME and SHAP are used for model interpretability, and identifying yield influencing factors. The model is validated using performance metrics such as MSE, MAE, and R. The results demonstrated that proposed model significantly enhances yield prediction accuracy, offering valuable insights for optimizing intercropping systems. This study highlights the potential of integrating machine learning, fuzzy inference and optimization techniques to advance precision agriculture and decision-making in sustainable farming.

摘要

玉米-大豆间作是一种可持续的耕作方式,可优化资源利用效率并提高产量潜力。准确的产量预测对于此类系统中的有效农业管理至关重要。本研究提出了一种模糊优化混合集成模型(FOHEM),将堆叠集成机器学习算法与模糊推理系统(FIS)相结合,以提高产量预测能力。数据集包括四种间作处理:SM(单作玉米)、SS(单作大豆)、2M2S(两行玉米与两行大豆交替种植)和2M3S(两行玉米与三行大豆交替种植)。关键输入特征包括不同处理下的环境因素、土壤养分和管理措施。FOHEM框架将FIS的输出与由随机森林(RF)、分类提升(CatBoost)和极限学习机(ELM)组成的堆叠集成模型相结合。遗传算法(GA)动态调整FIS与集成模型之间的权重,在提高准确性和稳健性的同时优化最终预测。此外,使用局部可解释模型无关解释(LIME)和SHapley值解释(SHAP)进行模型可解释性分析,并识别产量影响因素。使用均方误差(MSE)、平均绝对误差(MAE)和相关系数(R)等性能指标对模型进行验证。结果表明,所提出的模型显著提高了产量预测准确性,为优化间作系统提供了有价值的见解。本研究突出了整合机器学习、模糊推理和优化技术以推动精准农业和可持续农业决策的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验