Suppr超能文献

关于多数错觉的图论:理论结果与计算实验

On the graph theory of majority illusions: theoretical results and computational experiments.

作者信息

Venema-Los Maaike, Christoff Zoé, Grossi Davide

机构信息

University of Groningen, Groningen, The Netherlands.

University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Auton Agent Multi Agent Syst. 2025;39(2):39. doi: 10.1007/s10458-025-09720-w. Epub 2025 Sep 4.

Abstract

UNLABELLED

The popularity of an opinion in one's direct circles is not necessarily a good indicator of its popularity in one's entire community. Network structures make local information about global properties of the group potentially inaccurate, and the way a social network is wired constrains what kind of information distortion can actually occur. In this paper, we discuss which classes of networks allow for a large enough proportion of the population to get a wrong enough impression about the overall distribution of opinions. We start by focusing on the 'majority illusion', the case where one sees a majority opinion in one's direct circles that differs from the global majority. We show that no network structure can guarantee that most agents see the correct majority. We then perform computational experiments to study the likelihood of majority illusions in different classes of networks. Finally, we generalize to other types of illusions.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s10458-025-09720-w.

摘要

未标注

在一个人直接社交圈子中一种观点的流行程度不一定是其在整个群体中流行程度的良好指标。网络结构使得关于群体全局属性的局部信息可能不准确,并且社交网络的连接方式限制了实际可能出现的信息扭曲类型。在本文中,我们讨论哪些类别的网络会使足够大比例的人群对观点的总体分布产生足够错误的印象。我们首先关注“多数错觉”,即一个人在其直接社交圈子中看到的多数观点与全局多数观点不同的情况。我们表明,没有网络结构能够保证大多数个体看到正确的多数观点。然后我们进行计算实验来研究不同类别网络中多数错觉出现的可能性。最后,我们将其推广到其他类型的错觉。

补充信息

在线版本包含可在10.1007/s10458-025-09720-w获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e91/12411606/dfaa0d564257/10458_2025_9720_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验