Longhi Sonia, Ventura Salvador, Macedo-Ribeiro Sandra, Radusky Leandro G, Kovačević Jovana, Parra R Gonzalo, Andrade-Navarro Miguel A, Kajava Andrey V, Bednáriková Zuzana, Monzon Alexander, Vilaça Rita
Aix Marseille University, Marseille, Provence-Alpes-Côte d'Azur, France.
Centre National de la Recherche Scientifique (CNRS), Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, Provence-Alpes-Côte d'Azur, France.
Open Res Eur. 2025 Jul 15;5:185. doi: 10.12688/openreseurope.20628.1. eCollection 2025.
The 2024 Nobel Prizes in Chemistry and Physics mark a watershed moment in the convergence of artificial intelligence (AI) and molecular biology. This article explores how AI, particularly deep learning and neural networks, has revolutionized protein science through breakthroughs in structure prediction and computational design. It highlights the contributions of 2024 Nobel laureates John Hopfield, Geoffrey Hinton, David Baker, Demis Hassabis, and John Jumper, whose foundational work laid the groundwork for AI tools such as AlphaFold. These tools are transforming our understanding of protein folding, and the dynamics of non-globular proteins, including intrinsically disordered proteins. While AI-driven methods have made predicting protein structures faster and more accessible, they also underscore ongoing scientific challenges, including the dynamics of protein folding and amyloid aggregation. European initiatives, such as the COST Actions NGP-net (BM1405) and ML4NGP (CA21160), are spearheading efforts to bridge these gaps by integrating AI and experimental data in the study of non-globular proteins. Together, these developments signal a transformative shift in biology, paving the way for novel discoveries in medicine, biotechnology, and materials science.
2024年诺贝尔化学奖和物理学奖标志着人工智能(AI)与分子生物学融合的一个分水岭时刻。本文探讨了人工智能,特别是深度学习和神经网络,如何通过结构预测和计算设计方面的突破彻底改变了蛋白质科学。它突出了2024年诺贝尔奖获得者约翰·霍普菲尔德、杰弗里·辛顿、大卫·贝克、德米斯·哈萨比斯和约翰·朱珀的贡献,他们的基础性工作为诸如阿尔法折叠等人工智能工具奠定了基础。这些工具正在改变我们对蛋白质折叠以及非球状蛋白质动态变化的理解,其中包括内在无序蛋白质。虽然人工智能驱动的方法使蛋白质结构预测更快且更容易实现,但它们也凸显了持续存在的科学挑战,包括蛋白质折叠和淀粉样蛋白聚集的动态变化。欧洲的一些举措,如COST行动NGP-net(BM1405)和ML4NGP(CA21160),正在通过在非球状蛋白质研究中整合人工智能和实验数据来率先努力弥合这些差距。这些进展共同标志着生物学领域的变革性转变,为医学、生物技术和材料科学的新发现铺平了道路。