Suppr超能文献

用于高效稳定的倒置钙钛矿太阳能电池的分子杂化桥接,无需预沉积空穴传输层。

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

作者信息

Nie Zhiguo, Meng Weiwei, Peng Shimin, Huang Yulan, Wang Gang, Wang Dan, Sun Xinwen, Cai Qingbin, Wu Bo, Zhou Guofu, Xing Guichuan, Xu Jianbin, Long Mingzhu

机构信息

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China.

出版信息

Adv Mater. 2025 Sep 8:e10685. doi: 10.1002/adma.202510685.

Abstract

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface. Composition analysis demonstrates that both molecules are effectively extruded to the bottom of the perovskite layer and form a well-oriented hole-selective contact interface through strong coordination between the anchoring groups and ITO substrate. The intermolecular interaction, along with the small molecular size of ATAA, enables its uniform dispersion among large DMAcPA, facilitating a compact molecular arrangement, effectively suppressing aggregation, and enhancing hole-transporting efficiency. As a result, the inverted PSC employing this molecular hybrid strategy exhibits a power conversion efficiency as high as 26.64% (certified at 26.34%) and maintains 98.5% of its initial efficiency after 1000 h of continuous operation under 1-sun illumination at the maximum power point.

摘要

在没有预先沉积空穴传输层的钙钛矿太阳能电池(PSC)中,使用自组装分子(SAMs)建立低电阻的钙钛矿/ITO接触对于高效的空穴传输至关重要。然而,掩埋界面处的SAMs在挤压过程中经常会遇到诸如分布不均匀和分子聚集等问题,从而导致显著的能量损失。在此,提出了一种分子杂化桥接策略,通过将一种新型小分子(2-氨基噻唑-4-基)乙酸(ATAA)与常用的SAM 4-(2,7-二溴-9,9-二甲基吖啶-10(9H)-基)丁基)膦酸(DMAcPA)一起掺入钙钛矿前驱体中,以协同优化掩埋界面。成分分析表明,这两种分子都有效地挤压到钙钛矿层底部,并通过锚定基团与ITO衬底之间的强配位形成取向良好的空穴选择性接触界面。分子间相互作用以及ATAA的小分子尺寸使其能够均匀分散在大的DMAcPA之间,促进紧密的分子排列,有效抑制聚集,并提高空穴传输效率。结果,采用这种分子杂化策略的倒置PSC表现出高达26.64%的功率转换效率(认证值为26.34%),并且在最大功率点1个太阳光照下连续运行1000小时后仍保持其初始效率的98.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验