Suppr超能文献

通过混合模型扩展减少用于个体拟合评估的校准偏差。

Reducing Calibration Bias for Person Fit Assessment by Mixture Model Expansion.

作者信息

Braeken Johan, van Laar Saskia

机构信息

University of Oslo, Oslo, Norway.

Maastricht University, Maastricht, the Netherlands.

出版信息

Educ Psychol Meas. 2025 Sep 6:00131644251364252. doi: 10.1177/00131644251364252.

Abstract

Measurement appropriateness concerns the question of whether the test or survey scale under consideration can provide a valid measure for a specific individual. An aberrant item response pattern would provide internal counterevidence against using the test/scale for this person, whereas a more typical item response pattern would imply a fit of the measure to the person. Traditional approaches, including the popular Lz person fit statistic, are hampered by their two-stage estimation procedure and the fact that the fit for the person is determined based on the model calibrated on data that include the misfitting persons. This calibration bias creates suboptimal conditions for person fit assessment. Solutions have been sought through the derivation of approximating bias-correction formulas and/or iterative purification procedures. Yet, here we discuss an alternative one-stage solution that involves calibrating a model expansion of the measurement model that includes a mixture component for target aberrant response patterns. A simulation study evaluates the approach under the most unfavorable and least-studied conditions for person fit indices, short polytomous survey scales, similar to those found in large-scale educational assessments such as the Program for International Student Assessment or Trends in Mathematics and Science Study.

摘要

测量适宜性涉及所考虑的测试或调查量表是否能为特定个体提供有效测量的问题。异常的项目反应模式会提供内部反证,表明该测试/量表不适用于此人,而更典型的项目反应模式则意味着该测量与该个体相匹配。传统方法,包括流行的拉什个体拟合统计量,受到其两阶段估计程序以及个体拟合基于在包含不匹配个体的数据上校准的模型来确定这一事实的阻碍。这种校准偏差为人的拟合评估创造了次优条件。人们通过推导近似偏差校正公式和/或迭代净化程序来寻求解决方案。然而,在此我们讨论一种替代的单阶段解决方案,该方案涉及校准测量模型的模型扩展,其中包括针对目标异常反应模式的混合成分。一项模拟研究在个体拟合指标最不利且研究最少的条件下评估了该方法,这些条件类似于在大规模教育评估(如国际学生评估项目或数学和科学学习趋势)中发现的短多分调查量表。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/12413990/bbf0fc62bf86/10.1177_00131644251364252-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验