Zhao Jianxin, Liang Lijun, Li Jixian, Li Qi, Li Fei, Niu Lei, Xue Caiqiang, Fu Weiwei, Liu Yingchao, Song Shuangshuang, Liu Xuejun
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
J Neurooncol. 2025 Sep 9. doi: 10.1007/s11060-025-05225-4.
Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected. Radiomics, habitat radiomics, and combined models were constructed using machine learning classifiers, including KNN, DT, LR, and SVM. The AUC in the test set was used to evaluate the optimal predictive model. DCA curve and calibration curve were employed to evaluate the predictive performance of the models. SHAP analysis was utilized to visualize the contribution of each feature in the optimal model.
For the radiomics-based models, the Combined radiomics model constructed by LR demonstrated better performance, with the AUC of 0.8779 (95% CI: 0.8171-0.9386) in the training set and 0.7166 (95% CI: 0.497-0.9361) in the test set. The Habitat radiomics model (SVM) based on T1-CE showed an AUC of 0.7446 (95% CI: 0.6503- 0.8388) in the training set and 0.7433 (95% CI: 0.5322-0.9545) in the test set. Finally, the Combined all model exhibited the highest predictive performance: LR achieved AUC values of 0.8962 (95% CI: 0.8299-0.9625) and 0.8289 (95% CI: 0.6785-0.9793) in training and test sets, respectively.
The Combined all model developed in this study can provide effective reference value in predicting the DEL status of PCNSL, and habitat radiomics significantly enhances the predictive efficacy.
双表达淋巴瘤(DEL)是原发性中枢神经系统淋巴瘤(PCNSL)的一个独立高风险预后因素,其诊断目前依赖侵入性方法。本研究首次整合影像组学和栖息地影像组学特征,通过肿瘤内异质性分析增强术前DEL状态预测模型。
收集来自两个独立中心的139例PCNSL患者的临床、病理和MRI影像数据。使用包括KNN、DT、LR和SVM在内的机器学习分类器构建影像组学、栖息地影像组学和联合模型。测试集中的AUC用于评估最佳预测模型。采用DCA曲线和校准曲线评估模型的预测性能。利用SHAP分析直观显示最佳模型中各特征的贡献。
对于基于影像组学的模型,由LR构建的联合影像组学模型表现更佳,训练集中的AUC为0.8779(95%CI:0.8171 - 0.9386),测试集中的AUC为0.7166(95%CI:0.497 - 0.9361)。基于T1-CE的栖息地影像组学模型(SVM)在训练集中的AUC为0.7446(95%CI:0.6503 - 0.8388),测试集中的AUC为0.7433(95%CI:0.5322 - 0.9545)。最后,联合所有模型表现出最高的预测性能:LR在训练集和测试集中的AUC值分别为0.8962(95%CI:0.8299 - 0.9625)和0.8289(95%CI:0.6785 - 0.9793)。
本研究开发的联合所有模型在预测PCNSL的DEL状态方面可提供有效的参考价值,且栖息地影像组学显著提高了预测效能。