Suppr超能文献

利用高维细胞神经网络和矩阵的上下三角分解进行数字图像加密

Digital image encryption utilizing high-dimensional cellular neural networks and lower-upper triangular decomposition of matrix.

作者信息

Tao Limin, Liang Xikun, Han Lidong, Hu Bin

机构信息

School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China.

出版信息

Sci Prog. 2025 Jul-Sep;108(3):368504251375171. doi: 10.1177/00368504251375171. Epub 2025 Sep 9.

Abstract

At present, significant progress has been made in the research of image encryption, but there are still some issues that need to be explored in key space, password generation and security verification, encryption schemes, and other aspects. Aiming at this, a digital image encryption algorithm was developed in this paper. This algorithm integrates six-dimensional cellular neural network with generalized chaos to generate pseudo-random numbers to generate the plaintext-related ciphers. The initial image matrix is transformed into L-matrix and U-matrix through Lower-Upper decomposition. These matrices are then encrypted simultaneously with distinct cipher sequences. The algorithm's feasibility and security are demonstrated through comprehensive encryption simulations and performance analysis. The paper's contributions include i) the cellular neural network and an innovative chaos approach to develop a new ciphers scheme; ii) the image decomposition encryption effectively shorten the cipher length and reduce interception risks during transmission; iii) the frequent application of nonlinear transforms enhances the structural complexity of the cryptosystem and fortifies the security of the algorithm. Compared to existing algorithms, the paper achieves a novel image decomposition encryption mode with comprehensive advantages. This mode is expected to be applied in image communication security.

摘要

目前,图像加密研究已取得显著进展,但在密钥空间、密码生成与安全验证、加密方案等方面仍存在一些问题有待探索。针对此,本文开发了一种数字图像加密算法。该算法将六维细胞神经网络与广义混沌相结合来生成伪随机数,以生成与明文相关的密文。初始图像矩阵通过LU分解转化为L矩阵和U矩阵。然后,这些矩阵与不同的密文序列同时进行加密。通过全面的加密模拟和性能分析证明了该算法的可行性和安全性。本文的贡献包括:i)利用细胞神经网络和创新的混沌方法开发了一种新的加密方案;ii)图像分解加密有效缩短了密文长度,降低了传输过程中的拦截风险;iii)频繁应用非线性变换增强了密码系统的结构复杂性,强化了算法的安全性。与现有算法相比,本文实现了一种具有综合优势的新型图像分解加密模式。该模式有望应用于图像通信安全领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a621/12421057/0f84ed295fe8/10.1177_00368504251375171-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验