Suppr超能文献

利用机器学习预测鱼类麻醉剂量:以肉豆蔻油为例的案例研究。

Using machine learning to predict anesthetic dose in fish: a case study using nutmeg oil.

作者信息

Minaz Mert, Alparslan Cem, Er Akif

机构信息

Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye.

Mechanical Engineering, Recep Tayyip Erdogan University, Rize, Türkiye.

出版信息

Front Vet Sci. 2025 Aug 25;12:1652115. doi: 10.3389/fvets.2025.1652115. eCollection 2025.

Abstract

Application of anesthetic chemicals in aquaculture is important to minimize stress under normal operations such as handling, transport, and artificial breeding. In the past decade, the preference for natural anesthetics over synthetic ones has increased due to welfare issues regarding fish welfare and food safety. This study investigates the anesthetic efficacy of nutmeg oil () in three freshwater fish species- (Common carp), (Danube sturgeon), and (Rainbow trout)-by modeling behavioral (Induction and recovery times) and hematological responses using artificial neural networks (ANNs). Experimental data obtained from previous studies were used to develop feed-forward ANN models for each species and parameter. Each model was trained using different activation functions (purelin, tansig, logsig) and optimization algorithms (traingda, trainrp, trains), and the optimal network architecture was selected based on prediction performance for each output variable. The ANN models successfully predicted species-specific responses, revealing distinct sensitivity levels to nutmeg oil. Model performance was assessed using R, RMSE, and MAPE metrics, and the results revealed strong predictive capabilities of the ANN models across different fish species and physiological parameters. The most accurate models were obtained for WBC across all species, while induction and recovery times varied depending on fish physiology. The study demonstrates that ANN-based modeling can be a powerful tool for predicting optimal anesthetic doses and physiological responses without additional invasive testing. The results provide a scientific foundation for developing species-specific, welfare-limited anesthetic protocols and indicate the potential of artificial intelligence applications to experimental aquaculture practices.

摘要

在水产养殖中应用麻醉化学品对于在诸如处理、运输和人工繁殖等正常操作过程中尽量减少应激至关重要。在过去十年中,由于鱼类福利和食品安全等福利问题,对天然麻醉剂的偏好超过了合成麻醉剂。本研究通过使用人工神经网络(ANNs)对行为(诱导和恢复时间)和血液学反应进行建模,研究了肉豆蔻油对三种淡水鱼——鲤(鲤鱼)、多瑙河鲟、虹鳟——的麻醉效果。从先前研究中获得的实验数据被用于为每个物种和参数开发前馈ANN模型。每个模型使用不同的激活函数(purelin、tansig、logsig)和优化算法(traingda、trainrp、trains)进行训练,并根据每个输出变量的预测性能选择最佳网络架构。ANN模型成功预测了物种特异性反应,揭示了对肉豆蔻油不同的敏感水平。使用R、RMSE和MAPE指标评估模型性能,结果表明ANN模型在不同鱼类物种和生理参数方面具有强大的预测能力。所有物种中白细胞的模型最为准确,而诱导和恢复时间则因鱼的生理状态而异。该研究表明,基于ANN的建模可以成为预测最佳麻醉剂量和生理反应的有力工具,而无需额外的侵入性测试。研究结果为制定特定物种、福利受限的麻醉方案提供了科学依据,并表明人工智能应用于实验性水产养殖实践的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ae5/12415863/01b71e4468a5/fvets-12-1652115-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验