Ancheta Kenneth, Psifidi Androniki, Yale Andrew D, Le Calvez Sophie, Williams Jonathan
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom.
Front Vet Sci. 2025 Aug 25;12:1656976. doi: 10.3389/fvets.2025.1656976. eCollection 2025.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise. Therefore, there is an urgent need to develop tools to support and improve veterinary diagnostic workflows. Advances in molecular and computational approaches have opened new avenues for morphological analysis. This study explores the use of convolutional neural networks (CNNs) to differentiate cDLBCL from non-neoplastic lymph nodes, specifically reactive lymphoid hyperplasia (RLH). Whole slide images (WSIs) of haematoxylin-eosin stained lymph node slides were digitised at 20 × magnification and pre-processed using a modified Aachen protocol. Extracted images were split at the patient level into training (60%), validation (30%), and testing (10%) datasets. Here, we introduce HawksheadNet, a novel lightweight CNN architecture for cancer image classification and highlight the critical role of stain normalisation in CNN training. Once fine-tuned, HawksheadNet demonstrated strong generalisation performance in differentiating cDLBCL from RLH, achieving an area under the receiver operating characteristic (AUROC) of up to 0.9691 using fine-tuned parameters on StainNet-normalised images, outperforming pre-trained CNNs such as EfficientNet (up to 0.9492), Inception (up to 0.9311), and MobileNet (up to 0.9498). Additionally, WSI segmentation was achieved by overlaying the tile-wise predictions onto the original slide, providing a visual representation of the diagnosis that closely aligned with pathologist interpretation. Overall, this study highlights the potential of CNNs in cancer image analysis, offering promising advancements for clinical pathology workflows, patient care, and prognostication.
弥漫性大B细胞淋巴瘤是人类非霍奇金淋巴瘤(NHL)最常见的类型,约占全球NHL病例的30-40%。犬弥漫性大B细胞淋巴瘤(cDLBCL)是犬类中最常见的淋巴瘤亚型,具有侵袭性生物学行为。对于组织活检,目前针对肿大淋巴结的确诊诊断方法依赖于专家组织病理学评估,这既耗时又需要专业知识。因此,迫切需要开发工具来支持和改进兽医诊断工作流程。分子和计算方法的进展为形态学分析开辟了新途径。本研究探索使用卷积神经网络(CNN)来区分cDLBCL与非肿瘤性淋巴结,特别是反应性淋巴组织增生(RLH)。苏木精-伊红染色的淋巴结玻片的全切片图像(WSI)在20倍放大倍数下进行数字化处理,并使用改良的亚琛协议进行预处理。提取的图像在患者层面被划分为训练集(60%)、验证集(30%)和测试集(10%)。在此,我们介绍了HawksheadNet,一种用于癌症图像分类的新型轻量级CNN架构,并强调了染色归一化在CNN训练中的关键作用。一旦经过微调,HawksheadNet在区分cDLBCL与RLH方面表现出强大的泛化性能,在使用StainNet归一化图像上的微调参数时,受试者操作特征曲线下面积(AUROC)高达0.9691,优于诸如EfficientNet(高达0.9492)、Inception(高达0.9311)和MobileNet(高达0.9498)等预训练的CNN。此外,通过将逐块预测叠加到原始玻片上实现了WSI分割,提供了与病理学家解释紧密一致的诊断可视化表示。总体而言,本研究突出了CNN在癌症图像分析中的潜力,为临床病理工作流程、患者护理和预后提供了有前景的进展。