Suppr超能文献

基于全景X线片的绝经后女性骨质疏松症诊断人工智能预测模型的开发

Development of AI-Based Predictive Models for Osteoporosis Diagnosis in Postmenopausal Women from Panoramic Radiographs.

作者信息

Fanelli Francesco, Guglielmi Giuseppe, Troiano Giuseppe, Rivara Federico, Passeri Giovanni, Prencipe Gianluca, Zhurakivska Khrystyna, Guglielmi Riccardo, Calciolari Elena

机构信息

Department of Clinical and Experimental medicine, University of Foggia, 71122 Foggia, Italy.

Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy.

出版信息

J Clin Med. 2025 Jun 23;14(13):4462. doi: 10.3390/jcm14134462.

Abstract

: The aim of this study was to develop AI-based predictive models to assess the risk of osteoporosis in postmenopausal women using panoramic radiographs (OPTs). : A total of 301 panoramic radiographs (OPTs) from postmenopausal women were collected and labeled based on DXA-assessed bone mineral density. Of these, 245 OPTs from the Hospital of San Giovanni Rotondo were used for model training and internal testing, while 56 OPTs from the University of Parma served as an external validation set. A mandibular region of interest (ROI) was defined on each image. Predictive models were developed using classical radiomics, deep radiomics, and convolutional neural networks (CNNs), evaluated based on AUC, accuracy, sensitivity, and specificity. : Among the tested approaches, classical radiomics showed limited predictive ability (AUC = 0.514), whereas deep radiomics using DenseNet-121 features combined with logistic regression achieved the best performance in this group (AUC = 0.722). For end-to-end CNNs, ResNet-50 using a hybrid feature extraction strategy achieved the highest AUC in external validation (AUC = 0.786), with a sensitivity of 90.5%. While internal testing yielded high performance metrics, external validation revealed reduced generalizability, highlighting the challenges of translating AI models into clinical practice. : AI-based models show potential for opportunistic osteoporosis screening from OPT images. Although the results are promising, particularly those obtained with deep radiomics and transfer learning strategies, further refinement and validation in larger and more diverse populations are essential before clinical application. These models could support the early, non-invasive identification of at-risk patients, complementing current diagnostic pathways.

摘要

本研究的目的是开发基于人工智能的预测模型,以利用全景X线片(OPTs)评估绝经后女性骨质疏松症的风险。收集了301例绝经后女性的全景X线片(OPTs),并根据双能X线吸收法评估的骨密度进行标记。其中,来自圣乔瓦尼罗通多医院的245例OPTs用于模型训练和内部测试,而来自帕尔马大学的56例OPTs作为外部验证集。在每张图像上定义了下颌骨感兴趣区域(ROI)。使用经典放射组学、深度放射组学和卷积神经网络(CNNs)开发预测模型,并根据曲线下面积(AUC)、准确性、敏感性和特异性进行评估。在所测试的方法中,经典放射组学显示出有限的预测能力(AUC = 0.514),而使用DenseNet-121特征结合逻辑回归的深度放射组学在该组中表现最佳(AUC = 0.722)。对于端到端的卷积神经网络,使用混合特征提取策略的ResNet-50在外部验证中获得了最高的AUC(AUC = 0.786),敏感性为90.5%。虽然内部测试产生了较高的性能指标,但外部验证显示泛化性降低,突出了将人工智能模型转化为临床实践的挑战。基于人工智能的模型显示出从OPT图像中进行机会性骨质疏松症筛查的潜力。尽管结果很有前景,特别是那些通过深度放射组学和迁移学习策略获得的结果,但在临床应用之前,在更大和更多样化的人群中进行进一步的优化和验证至关重要。这些模型可以支持对高危患者进行早期、非侵入性识别,补充当前的诊断途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b94/12249935/f2856581b29a/jcm-14-04462-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验