Campos-Jara Sergi, Roorda Tycho, de Jong Laurens P M, Virchenko Vladyslav, Jiao Andy, Prieto Mauricio J, Tanase Liviu C, Mawass Mohamad A, Hsueh Jing-Wen, Calvi Vladimir, van Os Jetse, Félez-Guerrero Núria, Monsma Rick, van Rijn Richard, Schmidt Thomas, Schneider Grégory, Groot Irene M N
Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.
Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.
J Phys Chem C Nanomater Interfaces. 2025 Aug 21;129(35):15693-15701. doi: 10.1021/acs.jpcc.5c03822. eCollection 2025 Sep 4.
In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates. Advanced microscopic and spectroscopic techniques confirm the successful synthesis of h-BN. The growth of h-BN was investigated by scanning tunneling microscopy and low-energy electron microscopy. Low-energy electron diffraction confirms the single crystallinity of the grown 2-dimensional layer. X-ray photoelectron spectroscopy confirms the presence of boron and nitrogen bonds at the same binding energies reported in the literature for h-BN. In contrast, photoemission electron microscopy allows identification of the presence of h-BN throughout the Ni(111) surface. This work advances the understanding of h-BN growth mechanisms on metal substrates and provides a foundation for improving synthesis methods to meet the demands of next-generation materials and devices.
在本研究中,我们报告了在超高真空(UHV)条件下,使用六甲基硼嗪(HMB)作为非传统前驱体在Ni(111)上合成单晶h-BN的过程。HMB的新颖应用促进了甲基向Ni(111)体相的扩散,在高质量结晶h-BN层的形成中起着关键作用。合成过程在一块2毫米厚的Ni(111)单晶以及蓝宝石上2微米厚的Ni(111)薄膜上进行,以评估在工业相关衬底上合成h-BN的可行性。先进的显微镜和光谱技术证实了h-BN的成功合成。通过扫描隧道显微镜和低能电子显微镜研究了h-BN的生长情况。低能电子衍射证实了生长的二维层的单晶性。X射线光电子能谱证实了在文献报道的h-BN相同结合能处存在硼氮键。相比之下,光发射电子显微镜能够识别出整个Ni(111)表面上h-BN的存在。这项工作增进了对h-BN在金属衬底上生长机制的理解,并为改进合成方法以满足下一代材料和器件的需求奠定了基础。