Suppr超能文献

用于视觉感知及应用的基于ZnSnO的光电突触器件

ZnSnO-Based Optoelectronic Synaptic Device for Visual Perception and Applications.

作者信息

Xu Shan, Guan Zhiyuan, Yang Wenqi, Zhou Zhenyu, Zhang Zixuan, Li Xiaoxu, Li Yuchen, Yan Xiaobing

机构信息

College of Electron and Information Engineering, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, People's Republic of China.

出版信息

Research (Wash D C). 2025 Sep 9;8:0884. doi: 10.34133/research.0884. eCollection 2025.

Abstract

Visual bionic systems are of crucial importance in the development of artificial intelligence for environmental perception. However, the traditional artificial vision system has problems such as complex system and high energy consumption due to the physical separation of image perception, storage, and processing unit. In this work, we designed an ITO/ZTO/ZnO/ITO/Mica structure optoelectronic synaptic device, which is capable of integrating optical sensing, information storage, and logic computation. Utilizing its excellent light response characteristics, the PPF, learning-experience behavior, and Pavlov experiment were successfully simulated. In a 3 × 5 array, the "F" hidden in "E" was identified by using 2 different lighting conditions, successfully simulating color recognition. Furthermore, a further design of an automatic meeting vehicle system based on the embedded platform was carried out, and the meeting vehicle behavior was successfully achieved by utilizing the light response of the ZTO device. This discovery demonstrates the potential of ZTO devices in simulating the behavior of biological synapses, providing new avenue for neuroscience research and the development of bioelectronic devices.

摘要

视觉仿生系统在用于环境感知的人工智能发展中至关重要。然而,传统的人工视觉系统由于图像感知、存储和处理单元的物理分离而存在系统复杂和能耗高的问题。在这项工作中,我们设计了一种ITO/ZTO/ZnO/ITO/云母结构的光电突触器件,它能够集成光学传感、信息存储和逻辑计算。利用其优异的光响应特性,成功模拟了PPF、学习经验行为和巴甫洛夫实验。在一个3×5阵列中,通过使用2种不同的光照条件识别出隐藏在“E”中的“F”,成功模拟了颜色识别。此外,基于嵌入式平台对自动会议车辆系统进行了进一步设计,并利用ZTO器件的光响应成功实现了会议车辆行为。这一发现证明了ZTO器件在模拟生物突触行为方面的潜力,为神经科学研究和生物电子器件的发展提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f342/12417634/04a307ba3f0e/research.0884.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验