Suppr超能文献

一种用于多步骤急性中风成像的人工智能工具的性能:一项多中心诊断研究。

Performance of an artificial intelligence tool for multi-step acute stroke imaging: A multicenter diagnostic study.

作者信息

Agripnidis Thibault, Ayobi Angela, Quenet Sarah, Chaibi Yasmina, Avare Christophe, Jacquier Alexis, Girard Nadine, Hak Jean-François, Reyre Anthony, Brun Gilles, El Ahmadi Ahmed-Ali

机构信息

APHM, Service de Neuroradiologie Diagnostique et Interventionnelle, Hôpital de la Timone, Marseille 13005, France.

Avicenna.AI, 375 Avenue du Mistral, La Ciotat, France.

出版信息

Eur J Radiol Open. 2025 Aug 29;15:100678. doi: 10.1016/j.ejro.2025.100678. eCollection 2025 Dec.

Abstract

OBJECTIVE

Several artificial intelligence (AI) tools have been developed to assist in the stroke imaging workflow, which remains a major disease of the 21st century. This study evaluated the combined performance of an FDA-cleared and CE-marked AI-based device with three modules designed to detect intracerebral hemorrhage (ICH), identify large vessel occlusion (LVO), and calculate Alberta Stroke Program Early CT Scores (ASPECTS).

MATERIALS & METHODS: Non-contrast CT (NCCT) and/or computed tomography angiography (CTA) for suspicion of stroke acquired at La Timone and Nord University hospitals (Marseille, France) between March 2019 and March 2020 were retrospectively collected. The AI tool, CINA-HEAD (Avicenna.AI), processed the data to flag ICH, LVO, and calculate ASPECTS. The results were compared to ground truth evaluations by four expert neuroradiologists to compute diagnostic performances.

RESULTS

A total of 373 NCCT and 331 CTA from 405 patients (mean age 64.9 ± 18.9 SD, 52.6 % female) were included. The AI tool achieved an accuracy of 94.6 % [95 % CI: 91.8 %-96.7 %] for ICH detection on NCCT and of 86.4 % [95 % CI: 82.2 %-89.9 %] for LVO identification on CTA. The region-based ASPECTS analysis yielded an accuracy of 88.6 % [95 % CI: 87.8 %-89.3 %] and the dichotomized ASPECTS classification (ASPECTS ≥ 6) achieved 80.4 % accuracy.

CONCLUSION

This study demonstrates the reliable, stepwise performance of an AI-based stroke imaging tool across the diagnostic cascade of ICH and LVO detection and ASPECTS scoring. Such robust multi-stage evaluation supports its potential for streamlining acute stroke triage and decision-making.

摘要

目的

已开发出多种人工智能(AI)工具来辅助中风成像工作流程,中风仍是21世纪的一种主要疾病。本研究评估了一种获得美国食品药品监督管理局(FDA)批准并带有CE标志的基于AI的设备的综合性能,该设备有三个模块,旨在检测脑出血(ICH)、识别大血管闭塞(LVO)并计算阿尔伯塔中风项目早期CT评分(ASPECTS)。

材料与方法

回顾性收集了2019年3月至2020年3月期间在法国马赛拉蒂莫内医院和诺德大学医院采集的怀疑中风患者的非增强CT(NCCT)和/或计算机断层血管造影(CTA)。AI工具CINA-HEAD(Avicenna.AI)对数据进行处理,以标记ICH、LVO并计算ASPECTS。将结果与四位神经放射学专家的地面真实评估结果进行比较,以计算诊断性能。

结果

共纳入了405例患者(平均年龄64.9±18.9标准差,52.6%为女性)的373份NCCT和331份CTA。该AI工具在NCCT上检测ICH的准确率为94.6%[95%置信区间:91.8%-96.7%],在CTA上识别LVO的准确率为86.4%[95%置信区间:82.2%-89.9%]。基于区域的ASPECTS分析准确率为88.6%[95%置信区间:87.8%-89.3%],二分法ASPECTS分类(ASPECTS≥6)的准确率为80.4%。

结论

本研究证明了一种基于AI的中风成像工具在ICH和LVO检测以及ASPECTS评分的诊断级联过程中具有可靠的逐步性能。这种强大的多阶段评估支持其在简化急性中风分诊和决策方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb83/12419105/ce13aef0035c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验