Suppr超能文献

磁铁矿纳米颗粒增强混合微生物群落中氢驱动的生物甲烷化作用。

Magnetite Nanoparticles Enhancing H-Driven Biomethanation in a Mixed Microbial Community.

作者信息

Tucci Matteo, Sabangan Jasper I, Cruz Viggi Carolina, Bertaccini Lucia, Iosi Francesca, D'Ugo Emilio, Uccelletti Daniela, Matturro Bruna, Firrincieli Andrea, Piacentini Agnese, Fazi Stefano, Aulenta Federico

机构信息

Water Research Institute (IRSA) National Research Council (CNR) Monterotondo 00015 Italy.

Core Facilities The Italian National Health Institute (ISS) Rome 00161 Italy.

出版信息

Glob Chall. 2025 Aug 19;9(9):e00367. doi: 10.1002/gch2.202500367. eCollection 2025 Sep.

Abstract

Biological methanation is increasingly considered for biogas upgrading. Here, the supplementation of conductive magnetite (FeO) nanoparticles is investigated as a strategy to enhance H-driven biomethanation in a mixed hydrogenotrophic methanogenic community. An enrichment culture, maintained for over 180 days in a fill-and-draw anaerobic bioreactor under H/CO feeding, is used to inoculate batch microcosms containing 0, 1.25, and 2.5 gFe L of magnetite. Magnetite addition resulted in a dose-dependent increase in maximum methane production rates-up to 13-fold compared to controls-and sustained high hydrogen-to-methane conversion yields (78-107%). 16S rRNA gene sequencing reveals that archaeal community composition remained dominated by hydrogenotrophic and spp., whereas bacterial populations shifted from acetogenic and spp. toward H-oxidizing and spp. at higher magnetite concentrations. Electron microscopy and energy-dispersive X‑ray spectroscopy show that magnetite nanoparticles formed conductive networks bridging microbial cells, and fluorescence in situ hybridization confirmed co-localization of methanogens and within these aggregates. The findings support a direct interspecies electron transfer (DIET) mechanism facilitated by magnetite, whereby spp. oxidize H and shuttle electrons to methanogens, accelerating biomethanation. These results highlight the potential of magnetite-mediated DIET to improve power-to-methane processes and advance biogas upgrading technologies.

摘要

生物甲烷化越来越多地被用于沼气提质。在此,研究了添加导电磁铁矿(FeO)纳米颗粒作为一种策略,以增强混合氢营养型产甲烷群落中H驱动的生物甲烷化。在H/CO进料条件下,在填充-抽取式厌氧生物反应器中维持了180多天的富集培养物,用于接种含有0、1.25和2.5 gFe/L磁铁矿的批次微观世界。添加磁铁矿导致最大甲烷产率呈剂量依赖性增加——与对照相比高达13倍——并维持了高的氢-甲烷转化率(78-107%)。16S rRNA基因测序表明,古菌群落组成仍然以氢营养型和 spp. 为主,而细菌种群在较高磁铁矿浓度下从产乙酸型和 spp. 向H氧化型和 spp. 转变。电子显微镜和能量色散X射线光谱表明,磁铁矿纳米颗粒形成了连接微生物细胞的导电网络,荧光原位杂交证实了产甲烷菌和 在这些聚集体中的共定位。这些发现支持了由磁铁矿促进的直接种间电子转移(DIET)机制,即 spp. 氧化H并将电子传递给产甲烷菌,加速生物甲烷化。这些结果突出了磁铁矿介导的DIET在改善电-甲烷过程和推进沼气提质技术方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12418360/c6bcd4a9a7de/GCH2-9-e00367-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验