Callejas Cecilia, Guerrero Leandro, Erijman Leonardo, López Iván, Borzacconi Liliana
Universidad de La Republica Uruguay, Instituto de Ingeniería Química - Biotecnología de Procesos para el Ambiente (BIOPROA), Av. Herrera y Reissig 565 5th fl, 11300, Montevideo, Uruguay.
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr Héctor N. Torres' (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
Biodegradation. 2025 Jun 28;36(4):56. doi: 10.1007/s10532-025-10153-1.
In this study, we analyzed the prokaryotic community and methanogenic activities in sludge samples collected from a full-scale internal circulation (IC) reactor used to treat brewery wastewater. The reactor performance was monitored over 15 months, and specific methanogenic activities were periodically measured in fresh sludge samples using CO/H or acetate as substrates. The maximum hydrogenotrophic activities were consistently higher than maximum acetoclastic activities, suggesting the relevance of hydrogenotrophic methanogens in the sludge. Over six months, the prokaryotic community present in four sludge samples was analyzed using amplicon libraries and metagenomics. V4-16S rRNA amplicon libraries revealed the presence of a diverse microbial community dominated by Firmicutes and Bacteroidetes among bacterial phyla, and Halobacterota and Euryarchaeota among archaea. Furthermore, the 16S libraries constructed with cDNA were consistent with the methanogenic activity assays. A genome-centric metagenomics approach was used to assemble 42 high-quality metagenome-assembled genomes (MAGs), among which Methanothrix and Methanobacterium were the dominant archaeal members, and Acidobacteriota, Synergistota, Krumholzibacteriota, and Nitrospirota phyla were among the bacteria. Potential acetogenic members were explored via the fths gene; 15 MAGs contained this marker gene. A combination of methanogenic activity tests, amplicon libraries, and MAG analysis was used to gain insights into the prokaryotic structure and functional potential of the microbial community driving methane production in the reactor.
在本研究中,我们分析了从用于处理啤酒厂废水的全尺寸内循环(IC)反应器收集的污泥样品中的原核生物群落和产甲烷活性。对该反应器的性能进行了15个月的监测,并定期使用CO/H或乙酸盐作为底物,在新鲜污泥样品中测量比产甲烷活性。最大的氢营养活性始终高于最大的乙酸分解活性,这表明氢营养产甲烷菌在污泥中的相关性。在六个月的时间里,使用扩增子文库和宏基因组学分析了四个污泥样品中的原核生物群落。V4-16S rRNA扩增子文库揭示了细菌门中以厚壁菌门和拟杆菌门为主的多样化微生物群落,以及古菌中的盐杆菌门和广古菌门。此外,用cDNA构建的16S文库与产甲烷活性测定结果一致。采用以基因组为中心的宏基因组学方法组装了42个高质量的宏基因组组装基因组(MAG),其中甲烷丝菌属和甲烷杆菌属是主要的古菌成员,酸杆菌门、互养菌门、克鲁姆霍尔茨菌门和硝化螺旋菌门属于细菌。通过fths基因探索潜在的产乙酸成员;15个MAG含有该标记基因。结合产甲烷活性测试、扩增子文库和MAG分析,以深入了解驱动反应器中甲烷产生的微生物群落的原核生物结构和功能潜力。