Suppr超能文献

基于国家基本公共卫生服务的社区老年人肌少症w-ACT模型:开发与验证研究

A w-ACT model for sarcopenia among community-dwelling older adults based on National Basic Public Health Services: development and validation study.

作者信息

Huang Huanhuan, Jiang Siqi, Chen Zhiyu, Yu Xinyu, Ren Keke, Zhao Qinghua

机构信息

Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Nursing Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Public Health. 2025 Aug 26;13:1522903. doi: 10.3389/fpubh.2025.1522903. eCollection 2025.

Abstract

BACKGROUND

Sarcopenia leads to substantial health and well-being impairments in older adults, underscoring the need for early detection to facilitate intervention. Despite its importance, community settings face challenges with data accessibility, model interpretability, and predictive accuracy.

OBJECTIVE

To develop a local, data-driven, machine learning-based predictive model aimed at identifying high-risk sarcopenia populations among community-dwelling older adults.

METHODS

The study encompassed 910 participants over 60 years old from the National Basic Public Health Services (NBPHS) program. Sarcopenia was ascertained by the Asian Working Group for Sarcopenia (AWGS) criteria. We leveraged Logistic Regression and seven additional machine learning models for risk prediction, employing the LASSO method for feature selection, employing LASSO regression with 10-fold cross-validation for feature selection. The optimal lambda.1se threshold identified four key predictors forming the w-ACT model (weight, Age, Calf circumference, Triglycerides). A comprehensive set of 10 diagnostic indicators was utilized to assess model performance.

RESULTS

The Random Forest-based w-ACT model demonstrated superior performance, with an AUC of 0.872 (95%CI: 0.793,0.950) (validation set) and MCC of 0.566, 0.841 (95%CI: 0.777,0.904) (test set) and MCC of 0.511. Key predictors included weight, age, calf circumference, and triglycerides. SHAP analysis confirmed clinical interpretability.

CONCLUSION

The w-ACT model offers a reliable, interpretable tool for community-based sarcopenia screening, leveraging accessible variables to guide preventive care.

摘要

背景

肌肉减少症会对老年人的健康和幸福感造成严重损害,这凸显了早期检测以促进干预的必要性。尽管其很重要,但社区环境在数据可及性、模型可解释性和预测准确性方面面临挑战。

目的

开发一种基于本地数据驱动的机器学习预测模型,旨在识别社区居住的老年人中肌肉减少症的高危人群。

方法

该研究纳入了来自国家基本公共卫生服务(NBPHS)项目的910名60岁以上的参与者。根据亚洲肌肉减少症工作组(AWGS)标准确定肌肉减少症。我们利用逻辑回归和另外七种机器学习模型进行风险预测,采用LASSO方法进行特征选择,采用具有10倍交叉验证的LASSO回归进行特征选择。最优的lambda.1se阈值确定了形成w-ACT模型(体重、年龄、小腿围、甘油三酯)的四个关键预测因素。使用一组全面的10个诊断指标来评估模型性能。

结果

基于随机森林的w-ACT模型表现出卓越的性能,验证集的AUC为0.872(95%CI:0.793,0.950),测试集的MCC为0.566、0.841(95%CI:0.777,0.904),MCC为0.511。关键预测因素包括体重、年龄、小腿围和甘油三酯。SHAP分析证实了临床可解释性。

结论

w-ACT模型为基于社区的肌肉减少症筛查提供了一种可靠、可解释的工具,利用可获取的变量来指导预防保健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e54e/12419224/26e94afc8f37/fpubh-13-1522903-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验