Suppr超能文献

利用生物信息学和靶向二硫键化程序性坏死的计算药物发现技术鉴定心肌梗死的诊断生物标志物

Identification of Diagnostic Biomarkers for Myocardial Infarction Using Bioinformatics and Disulfidptosis-Targeted Computational Drug Discovery.

作者信息

Zhang Haoran, Song Ziguang, Shen Weitao, Zhang Donghui

机构信息

Cardiovascular Medicine Ward, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.

Cardiovascular Medicine Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

Mediators Inflamm. 2025 Sep 2;2025:5054377. doi: 10.1155/mi/5054377. eCollection 2025.

Abstract

Disulfidptosis, a newly discovered form of regulated cell death, is involved in multiple disease processes. This study applied computational methods to identify disulfidptosis-related genes in myocardial infarction (MI). Differentially expressed genes (DEGs) from GSE66360 dataset were screened using the limma package and intersected with genes in weighted gene coexpression network analysis (WGCNA) modules to obtain candidate genes. Biomarkers were selected via support vector machine-recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO), and validated by quantitative real-time (qRT)-PCR, CCK-8, and flow cytometry. Enrichment and immune infiltration analyses were performed using clusterProfiler and CIBERSORT tools. Potential drugs were predicted via the Coremine database and visualized with Cytoscape. Seurat and CellChat packages were employed to perform single-cell transcriptomic analysis and develop cell-cell communication network, respectively. The genes in the lightgreen module that had the highest correlation with immune scores were selected. Next, we identified 10 biomarkers (, , , , , , , , , and ), all of which showed significantly higher mRNA levels in AC16-oxygen-glucose deprivation (OGD) cells compared to controls. Silencing and enhanced cell viability and reduced apoptosis in AC16-OGD cells. Immune infiltration analysis suggested that and modulated T cell function, contributing to MI pathogenesis. Drug analysis predicted 15 candidate drugs targeting both and . Single-cell analysis showed that distinguished six cell types in MI, with adipocytes serving as a communication hub interacting closely with cardiomyocytes, fibroblasts, endothelial cells, and macrophages. These findings highlighted the potential of the identified biomarkers as novel therapeutic targets for MI.

摘要

二硫化物诱导的细胞死亡是一种新发现的程序性细胞死亡形式,参与多种疾病进程。本研究应用计算方法来识别心肌梗死(MI)中与二硫化物诱导的细胞死亡相关的基因。使用limma软件包筛选来自GSE66360数据集的差异表达基因(DEG),并将其与加权基因共表达网络分析(WGCNA)模块中的基因进行交集运算,以获得候选基因。通过支持向量机递归特征消除(SVM-RFE)和最小绝对收缩和选择算子(LASSO)选择生物标志物,并通过定量实时(qRT)-PCR、CCK-8和流式细胞术进行验证。使用clusterProfiler和CIBERSORT工具进行富集和免疫浸润分析。通过Coremine数据库预测潜在药物,并用Cytoscape进行可视化。分别使用Seurat和CellChat软件包进行单细胞转录组分析和构建细胞间通信网络。选择与免疫评分相关性最高的浅绿模块中的基因。接下来,我们鉴定了10种生物标志物(、、、、、、、、和),与对照组相比,所有这些标志物在AC16氧糖剥夺(OGD)细胞中的mRNA水平均显著更高。沉默和可提高AC16-OGD细胞的活力并减少细胞凋亡。免疫浸润分析表明,和可调节T细胞功能,促进心肌梗死的发病机制。药物分析预测了15种同时靶向和的候选药物。单细胞分析显示,心肌梗死中有六种不同的细胞类型,脂肪细胞作为与心肌细胞、成纤维细胞、内皮细胞和巨噬细胞密切相互作用的通信枢纽。这些发现突出了所鉴定的生物标志物作为心肌梗死新治疗靶点的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad8/12419921/bf58725fd616/MI2025-5054377.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验