Zhu Yihao, Chen Yuxi, Xu Jiajin, Zu Yao
International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
Biomedicines. 2024 Jul 22;12(7):1626. doi: 10.3390/biomedicines12071626.
Recent studies have demonstrated that the migrasome, a newly functional extracellular vesicle, is potentially significant in the occurrence, progression, and diagnosis of cardiovascular diseases. Nonetheless, its diagnostic significance and biological mechanism in acute myocardial infarction (AMI) have yet to be fully explored.
To remedy this gap, we employed an integrative machine learning (ML) framework composed of 113 ML combinations within five independent AMI cohorts to establish a predictive migrasome-related signature (MS). To further elucidate the biological mechanism underlying MS, we implemented single-cell RNA sequencing (scRNA-seq) of cardiac + cells from AMI-induced mice. Ultimately, we conducted mendelian randomization (MR) and molecular docking to unveil the therapeutic effectiveness of MS.
MS demonstrated robust predictive performance and superior generalization, driven by the optimal combination of Stepglm and Lasso, on the expression of nine migrasome genes (, , , , , , , , , and ). Notably, was found to be predominantly expressed in cardiac macrophages in AMI-induced mice, mechanically regulating macrophage transformation between anti-inflammatory and pro-inflammatory. Furthermore, we showed a positive causality between genetic predisposition towards expression and AMI risk, positioning it as a causative gene. Finally, we showed that ginsenoside Rh1, which interacts closely with ITGB1, could represent a novel therapeutic approach for repressing ITGB1.
Our MS has implications in forecasting and curving AMI to inform future diagnostic and therapeutic strategies for AMI.
最近的研究表明,迁移体作为一种新发现的具有功能的细胞外囊泡,在心血管疾病的发生、发展和诊断中可能具有重要意义。然而,其在急性心肌梗死(AMI)中的诊断意义和生物学机制尚未得到充分探索。
为了弥补这一空白,我们采用了一个整合机器学习(ML)框架,该框架由五个独立AMI队列中的113种ML组合组成,以建立一个与迁移体相关的预测特征(MS)。为了进一步阐明MS背后的生物学机制,我们对AMI诱导小鼠的心脏+细胞进行了单细胞RNA测序(scRNA-seq)。最终,我们进行了孟德尔随机化(MR)和分子对接,以揭示MS的治疗效果。
由Stepglm和Lasso的最佳组合驱动,MS在9个迁移体基因(、、、、、、、、和)的表达上表现出强大的预测性能和卓越的泛化能力。值得注意的是,发现在AMI诱导的小鼠心脏巨噬细胞中主要表达,它在机械上调节巨噬细胞在抗炎和促炎之间的转变。此外,我们发现基因易感性与表达之间存在正向因果关系,将其定位为致病基因。最后,我们表明与ITGB1密切相互作用的人参皂苷Rh1可能代表一种抑制ITGB1的新治疗方法。
我们的MS对预测和控制AMI具有重要意义,可为未来AMI的诊断和治疗策略提供参考。