Suppr超能文献

经典和量子马尔可夫过程中计数可观测量首次通过时间的涨落界限

Bounds on Fluctuations of First Passage Times for Counting Observables in Classical and Quantum Markov Processes.

作者信息

Bakewell-Smith George, Girotti Federico, Guţă Mădălin, P Garrahan Juan

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD UK.

Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD UK.

出版信息

J Stat Phys. 2025;192(9):126. doi: 10.1007/s10955-025-03506-w. Epub 2025 Sep 8.

Abstract

We study the statistics of first passage times (FPTs) of trajectory observables in both classical and quantum Markov processes. We consider specifically the FPTs of , that is, the times to reach a certain threshold of a trajectory quantity which takes values in the positive integers and is non-decreasing in time. For classical continuous-time Markov chains we rigorously prove: (i) a large deviation principle (LDP) for FPTs, whose corollary is a strong law of large numbers; (ii) a concentration inequality for the FPT of the dynamical activity, which provides an upper bound to the probability of its fluctuations to all orders; and (iii) an upper bound to the probability of the tails for the FPT of an arbitrary counting observable. For quantum Markov processes we rigorously prove: (iv) the quantum version of the LDP, and subsequent strong law of large numbers, for the FPTs of generic counts of quantum jumps; (v) a concentration bound for the the FPT of total number of quantum jumps, which provides an upper bound to the probability of its fluctuations to all orders, together with a similar bound for the sub-class of quantum reset processes which requires less strict irreducibility conditions; and (vi) a tail bound for the FPT of arbitrary counts. Our results allow to extend to FPTs the so-called "inverse thermodynamic uncertainty relations" that upper bound the size of fluctuations in time-integrated quantities. We illustrate our results with simple examples.

摘要

我们研究了经典和量子马尔可夫过程中轨迹可观测量的首次通过时间(FPTs)的统计特性。我们特别考虑了 的首次通过时间,即达到轨迹量的某个阈值的时间,该轨迹量取值为正整数且随时间非递减。对于经典连续时间马尔可夫链,我们严格证明了:(i)首次通过时间的大偏差原理(LDP),其推论是大数定律;(ii)动态活动首次通过时间的集中不等式,它为其各阶涨落概率提供了一个上界;(iii)任意计数可观测量首次通过时间尾部概率的一个上界。对于量子马尔可夫过程,我们严格证明了:(iv)量子跳跃一般计数的首次通过时间的量子版大偏差原理以及随后的大数定律;(v)量子跳跃总数首次通过时间的集中界,它为其各阶涨落概率提供了一个上界,以及对量子重置过程子类的类似界,该子类需要不太严格的不可约条件;(vi)任意计数首次通过时间的尾部界。我们的结果允许将所谓的“逆热力学不确定性关系”扩展到首次通过时间,该关系为时间积分量的涨落大小提供了上界。我们用简单的例子说明了我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaff/12417300/e91604bf5df0/10955_2025_3506_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验