Brunátová Jana, Dokken Jørgen S, Valen-Sendstad Kristian, Hron Jaroslav
Mathematical Institute, Charles University, Prague, Czechia.
Bernoulli Institute, University of Groningen, Groningen, the Netherlands.
Int J Numer Method Biomed Eng. 2025 Sep;41(9):e70086. doi: 10.1002/cnm.70086.
Wall shear stress (WSS) is a crucial hemodynamic quantity extensively studied in cardiovascular research, yet its numerical computation is not straightforward. This work compares WSS results obtained from two different finite element discretizations, quantifies the differences between continuous and discontinuous stresses, and introduces a modified variationally consistent method for WSS evaluation through the formulation of a boundary-flux problem. Two benchmark problems are considered: a 2D Stokes flow on a unit square and a 3D Poiseuille flow through a cylindrical pipe. These are followed by investigations of steady-state Navier-Stokes flow in two image-based, patient-specific aneurysms. The study focuses on P1/P1 stabilized and Taylor-Hood P2/P1 mixed finite elements for velocity and pressure. WSS is computed using either the proposed boundary-flux method or as a projection of tangential traction onto first order Lagrange (P1), discontinuous Galerkin first order (DG-1), or discontinuous Galerkin zero order (DG-0) space. For the P1/P1 stabilized element, the boundary-flux and P1 projection methods yielded equivalent results. With the P2/P1 element, the boundary-flux evaluation demonstrated faster convergence in the Poiseuille flow example but showed increased sensitivity to pressure field inaccuracies in image-based geometries compared to the projection method. Furthermore, a paradoxical degradation in WSS accuracy was observed when combining the P2/P1 element with fine boundary-layer meshes on a cylindrical geometry, an effect attributed to inherent geometric approximation errors. In aneurysm geometries, the P2/P1 element exhibited superior robustness to mesh size when evaluating average WSS and low shear area (LSA), outperforming the P1/P1 stabilized element. Projecting discontinuous finite element functions into continuous spaces can introduce artifacts, such as the Gibbs phenomenon. Consequently, it is crucial to carefully select the finite element space for boundary stress calculations, not only in applications involving WSS computations for aneurysms.
壁面剪应力(WSS)是心血管研究中广泛研究的一个关键血流动力学量,但其数值计算并不简单。这项工作比较了从两种不同有限元离散化获得的WSS结果,量化了连续应力和不连续应力之间的差异,并通过边界通量问题的公式化引入了一种改进的变分一致方法用于WSS评估。考虑了两个基准问题:单位正方形上的二维斯托克斯流和通过圆柱形管道的三维泊肃叶流。随后对两个基于图像的、患者特异性动脉瘤中的稳态纳维-斯托克斯流进行了研究。该研究重点关注用于速度和压力的P1/P1稳定化和泰勒-胡德P2/P1混合有限元。WSS使用所提出的边界通量方法计算,或者作为切向牵引力在一阶拉格朗日(P1)、间断伽辽金一阶(DG-1)或间断伽辽金零阶(DG-0)空间上的投影来计算。对于P1/P1稳定化单元,边界通量和P1投影方法产生了等效结果。对于P2/P1单元,在泊肃叶流示例中,边界通量评估显示出更快的收敛速度,但与投影方法相比,在基于图像的几何形状中对压力场不准确性表现出更高的敏感性。此外,在圆柱形几何形状上,将P2/P1单元与精细边界层网格结合时,观察到WSS精度出现了自相矛盾的下降,这种效应归因于固有的几何近似误差。在动脉瘤几何形状中,在评估平均WSS和低剪切面积(LSA)时,P2/P1单元对网格尺寸表现出更好的鲁棒性,优于P1/P1稳定化单元。将间断有限元函数投影到连续空间中可能会引入伪影,如吉布斯现象。因此,不仅在涉及动脉瘤WSS计算的应用中,仔细选择用于边界应力计算的有限元空间至关重要。