Suppr超能文献

股票市场中的大语言模型:应用、技术与见解。

Large Language Models in equity markets: applications, techniques, and insights.

作者信息

Jadhav Aakanksha, Mirza Vishal

机构信息

Independent Researcher, New York, NY, United States.

出版信息

Front Artif Intell. 2025 Aug 27;8:1608365. doi: 10.3389/frai.2025.1608365. eCollection 2025.

Abstract

Recent breakthroughs in Large Language Models (LLMs) have the potential to disrupt equity investing by enabling sophisticated data analysis, market prediction, and automated trading. This paper presents a comprehensive review of 84 research studies conducted between 2022 and early 2025, synthesizing the state of LLM applications in stock investing. We provide a dual-layered categorization: first, by financial applications such as stock price forecasting, sentiment analysis, portfolio management, and algorithmic trading; second, by technical methodologies, including prompting, fine-tuning, multi-agent frameworks, reinforcement learning, and custom architectures. Additionally, we consolidate findings on the datasets used, ranging from financial statements to multimodal data (news, market trends, earnings transcripts, social media), and systematically compare general-purpose vs. finance-specialized LLMs used in research. Our analysis identifies key research trends, commonalities, and divergences across studies, evaluating both their empirical contributions and methodological innovations. We highlight the strengths of existing research, such as improved sentiment extraction and the use of reinforcement learning to factor market feedback, alongside critical gaps in scalability, interpretability, and real-world validation. Finally, we propose directions for future research, emphasizing hybrid modeling approaches, architectures that factor reasoning and large context windows, and robust evaluation frameworks to advance AI-driven financial strategies. By mapping the intersection of LLMs and equity markets, this review provides a foundation and roadmap for future research and practical implementation in the financial sector.

摘要

大语言模型(LLMs)的最新突破有可能通过实现复杂的数据分析、市场预测和自动化交易来扰乱股票投资。本文对2022年至2025年初进行的84项研究进行了全面综述,综合了大语言模型在股票投资中的应用状况。我们提供了一个双层分类:首先,按金融应用分类,如股价预测、情绪分析、投资组合管理和算法交易;其次,按技术方法分类,包括提示、微调、多智能体框架、强化学习和定制架构。此外,我们汇总了关于所使用数据集的研究结果,范围从财务报表到多模态数据(新闻、市场趋势、收益报告、社交媒体),并系统地比较了研究中使用的通用大语言模型和金融专用大语言模型。我们的分析确定了各项研究的关键研究趋势、共性和差异,评估了它们的实证贡献和方法创新。我们强调了现有研究的优势,如改进的情绪提取以及使用强化学习纳入市场反馈,同时也指出了在可扩展性、可解释性和现实世界验证方面的关键差距。最后,我们提出了未来研究的方向,强调混合建模方法、考虑推理和大上下文窗口的架构,以及强大的评估框架,以推进人工智能驱动的金融策略。通过描绘大语言模型与股票市场的交叉点,本综述为金融领域未来的研究和实际应用提供了基础和路线图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验