Suppr超能文献

利用X射线显微断层扫描和深度学习分割技术对一种蜥蜴物种()进行脑虚拟组织学和体积测量。

Brain virtual histology and volume measurement of a lizard species () using X-ray micro-tomography and deep-learning segmentation.

作者信息

Zhou Tunhe, Dragunova Yulia, Triki Zegni

机构信息

SUBIC, Stockholm University, Stockholm, Sweden.

KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

PeerJ. 2025 Sep 1;13:e19672. doi: 10.7717/peerj.19672. eCollection 2025.

Abstract

There is an increasing emphasis on understanding individual variation in brain structure-such as overall brain size and the size of specific regions-and linking this variation to behaviour, cognition, and the driving social and environmental factors. However, logistical challenges arise when studying the brain, especially in research involving wild animals, such as dealing with small sample sizes and time-consuming methods. In this study, we used wild lizards, , as our model. We developed an efficient and accurate method that combines X-ray micro-tomography and deep-learning segmentation to estimate the volume of six main brain areas: the olfactory bulbs, telencephalon, diencephalon, midbrain, cerebellum, and brain stem. Through quantitative comparisons, we show that a sufficiently trained deep-learning neural network can be developed with as few as five samples. Using this trained model, we obtained volume data for the six brain regions from 29 brain samples of . This approach drastically reduced the time needed for manual segmentation from several months to just a few weeks. We present a comprehensive protocol detailing our methods, which includes sample preparation, X-ray tomography, and 3D volumetric segmentation. This work collectively provides valuable resources that can assist researchers not only in animal behaviour and physiology, but also in biomedical research and computer sciences.

摘要

人们越来越重视了解大脑结构的个体差异,如大脑整体大小和特定区域的大小,并将这种差异与行为、认知以及驱动的社会和环境因素联系起来。然而,在研究大脑时会出现后勤方面的挑战,尤其是在涉及野生动物的研究中,比如处理小样本量和耗时的方法。在本研究中,我们使用野生蜥蜴作为我们的模型。我们开发了一种高效且准确的方法,该方法结合了X射线显微断层扫描和深度学习分割技术,以估计六个主要脑区的体积:嗅球、端脑、间脑、中脑、小脑和脑干。通过定量比较,我们表明使用少至五个样本就可以开发出经过充分训练的深度学习神经网络。使用这个经过训练的模型,我们从29个[蜥蜴名称缺失]的脑样本中获得了六个脑区的体积数据。这种方法将手动分割所需的时间从几个月大幅减少到仅几周。我们提出了一个详细描述我们方法的综合方案,其中包括样本制备、X射线断层扫描和3D体积分割。这项工作共同提供了有价值的资源,不仅可以帮助研究动物行为和生理学的人员,还可以帮助生物医学研究人员和计算机科学家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d65/12422266/35965cccd472/peerj-13-19672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验