Suppr超能文献

用于低品位能量收集的全印刷热电池模块。

Fully Printed Thermogalvanic Modules for Low-Grade Energy Harvesting.

作者信息

Candiotto de Oliveira Pedro, Alvi Naveed Ul Hassan, Zahabi Najmeh, Wentz Filippa, Freitag Kathrin, Herlogsson Lars, Ail Ujwala, Ullah Khan Zia, Zozoulenko Igor, Crispin Reverant, Zhao Dan

机构信息

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.

Printed, Bio and Organic Electronics Units, Department of Smart Hardware, Digital Systems Division, RISE Research Institutes of Sweden AB, Södra Grytsgatan 4, 602 33 Norrköping, Sweden.

出版信息

ACS Appl Energy Mater. 2025 Aug 26;8(17):12868-12877. doi: 10.1021/acsaem.5c02080. eCollection 2025 Sep 8.

Abstract

Thermogalvanic cells offer a promising route for harvesting low-grade heat by utilizing temperature-dependent redox reactions at spatially separated electrodes. Their potential for low-cost, flexible, and sustainable energy conversion makes them attractive for scalable applications; however, practical implementation is limited by challenges in modular integration and manufacturability. Here, we report the development of a fully printed thermogalvanic module (TGM) that integrates screen-printed hybrid current collectors, activated carbon-based electrodes, an adhesive sealing layer, and a laser-drilled spacer. This fully additive and scalable fabrication strategy enables the precise assembly of complex architectures without traditional stacking or wiring. The resulting 36-cell TGM, employing widely available aqueous electrolytes, demonstrates a reproducible thermopower of 38 mV K and a peak output power of 9 μW under a modest 14 K temperature difference. This work demonstrates a practical pathway toward large-area printed thermogalvanic systems for ambient heat harvesting and paves the way for future integration into flexible and wearable energy platforms.

摘要

热电池通过在空间分离的电极上利用与温度相关的氧化还原反应,为收集低品位热量提供了一条有前景的途径。它们在低成本、灵活性和可持续能源转换方面的潜力使其在可扩展应用中具有吸引力;然而,实际应用受到模块化集成和可制造性方面挑战的限制。在此,我们报告了一种全印刷热电池模块(TGM)的开发,该模块集成了丝网印刷的混合集流体、活性炭基电极、粘合剂密封层和激光钻孔间隔层。这种完全加法式且可扩展的制造策略能够精确组装复杂结构,而无需传统的堆叠或布线。由此产生的36电池TGM采用广泛可用的水性电解质,在适度的14K温差下,展示出38 mV/K的可重复热功率和9 μW的峰值输出功率。这项工作展示了通往用于环境热量收集的大面积印刷热电池系统的实用途径,并为未来集成到柔性和可穿戴能源平台铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验