Suppr超能文献

通过定制溶剂工程实现超薄钙钛矿埋入界面的协同优化,用于高性能半透明钙钛矿太阳能电池。

Synergistic Optimization of Ultrathin Perovskite Buried Interfaces via Tailored Solvent Engineering for High-Performance Semitransparent Perovskite Solar Cells.

作者信息

Wang Longxiang, Liu Penghui, Wang Jiapeng, Lu Yashun, Jin Dunyuan, Li Guiqiang

机构信息

Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China.

出版信息

ACS Appl Mater Interfaces. 2025 Sep 24;17(38):53365-53375. doi: 10.1021/acsami.5c07684. Epub 2025 Sep 12.

Abstract

Semitransparent perovskite solar cells (ST-PSCs) typically require ultrathin perovskite films (<200 nm) to balance photovoltaic performance and optical transmittance, meeting the practical demands of building-integrated photovoltaics (BIPV). However, low-concentration precursor solutions used for fabricating such ultrathin films often result in poor film densification and exacerbate the desorption of self-assembled monolayers (SAMs), leading to instability at the buried interface. This study presents a novel low-sensitivity solvent strategy employing a strategically designed dimethylformamide (DMF)/-methyl-2-pyrrolidone (NMP)/chlorobenzene (CB) ternary cosolvent system to finely tune the interaction between perovskite adducts and SAMs, while suppressing excess solvent-induced disruption at the fragile SAM interface. This approach ensures uniform interfacial contact and enables the formation of ultrathin perovskite films with low defect densities. Notably, the enhanced nucleation kinetics and homogeneous grain distribution also promote preferential crystallographic orientation, which is beneficial for carrier transport. The optimized ST-PSCs achieved a champion power conversion efficiency (PCE) of 14.88% and an average visible transmittance (AVT) of nearly 21%, along with outstanding long-term storage stability (T90 = 1100 h) and operational durability under light-dark cycling (T90 = 232 h). Additionally, a thermodynamic-limit-based performance evaluation method was developed to systematically analyze performance losses in semitransparent devices. This work provides new directions for optimizing low-concentration perovskite precursor solutions and lays an important foundation for the application of ST-PSCs in BIPV.

摘要

半透明钙钛矿太阳能电池(ST-PSC)通常需要超薄钙钛矿薄膜(<200 nm)来平衡光伏性能和光学透过率,以满足建筑一体化光伏(BIPV)的实际需求。然而,用于制备这种超薄薄膜的低浓度前驱体溶液往往会导致薄膜致密化不良,并加剧自组装单分子层(SAM)的解吸,从而导致掩埋界面处的不稳定性。本研究提出了一种新型的低灵敏度溶剂策略,采用精心设计的二甲基甲酰胺(DMF)/N-甲基-2-吡咯烷酮(NMP)/氯苯(CB)三元共溶剂体系,以微调钙钛矿加合物与SAM之间的相互作用,同时抑制在脆弱的SAM界面处由过量溶剂引起的破坏。这种方法确保了均匀的界面接触,并能够形成具有低缺陷密度的超薄钙钛矿薄膜。值得注意的是,增强的成核动力学和均匀的晶粒分布也促进了优先的晶体取向,这有利于载流子传输。优化后的ST-PSC实现了14.88%的冠军功率转换效率(PCE)和近21%的平均可见光透过率(AVT),以及出色的长期存储稳定性(T90 = 1100 h)和在明暗循环下的操作耐久性(T90 = 232 h)。此外,还开发了一种基于热力学极限的性能评估方法,以系统地分析半透明器件中的性能损失。这项工作为优化低浓度钙钛矿前驱体溶液提供了新的方向,并为ST-PSC在BIPV中的应用奠定了重要基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验