Bao Weizhai, Shen Hao, Wang Ronghao, Qian Chengfei, Wang Yaoyu, Zhang Yangyang, Liu He, Guo Cong, Yu Feng, Quan Bin, Li Jingfa, Sun Kaiwen
School of Chemistry and Materials ScienceNanjing University of Information Science and Technology, Nanjing 210044, China.
Australian Centre for Advanced Photovoltaics School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia.
ACS Appl Mater Interfaces. 2025 Sep 24;17(38):53427-53436. doi: 10.1021/acsami.5c11206. Epub 2025 Sep 12.
The lithium metal anode offers a high theoretical capacity (3860 mAh g) and a low electrochemical potential (-3.040 V vs SHE). These properties make it a promising candidate for use as an anode in next-generation lithium-ion batteries. However, the uneven deposition and stripping of lithium lead to dendrite growth and instability of the solid electrolyte interface. These problems seriously hinder the practical application of lithium metal batteries. Stable Li anodes enabled by a uniform lithiophilic nucleation layer and photoassisted current collectors are highly desirable. However, only a few studies have explored this approach. In this work, a thin ZnO layer was conformally deposited onto a 3D current collector via atomic layer deposition (ALD) to achieve uniform and stable lithium metal growth. The ZnO layer serves as a lithium nucleation layer and provides photoresponsiveness, thereby facilitating subsequent photoassisted deposition. This modification induced local carrier redistribution, reduced the overpotential by 25.5 mV, and significantly enhanced the lithium deposition kinetics. A high Coulombic efficiency of 96.56% was achieved at 3 mA cm after 300 cycles. These findings provide valuable insights into the development of next-generation photoassisted Li metal anodes, highlighting their potential for improved performance and stability.
锂金属阳极具有高理论容量(3860 mAh g)和低电化学势(相对于标准氢电极-3.040 V)。这些特性使其成为下一代锂离子电池阳极的有前景的候选材料。然而,锂的不均匀沉积和脱嵌会导致枝晶生长以及固体电解质界面的不稳定。这些问题严重阻碍了锂金属电池的实际应用。由均匀的亲锂成核层和光辅助集流体实现的稳定锂阳极是非常理想的。然而,只有少数研究探索了这种方法。在这项工作中,通过原子层沉积(ALD)将一层薄的ZnO层均匀沉积在三维集流体上,以实现均匀且稳定的锂金属生长。ZnO层作为锂成核层并提供光响应性,从而促进后续的光辅助沉积。这种改性引起了局部载流子重新分布,使过电位降低了25.5 mV,并显著增强了锂沉积动力学。在3 mA cm下经过300次循环后,实现了96.56%的高库仑效率。这些发现为下一代光辅助锂金属阳极的开发提供了有价值的见解,突出了它们在性能和稳定性提升方面的潜力。