Suppr超能文献

弹性成像与基于人工智能的S-Detect在甲状腺结节检测中的诊断性能比较分析

Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection.

作者信息

Park Jee-Yeun, Yang Sung-Hee

机构信息

Department of Radiological Science, Jangpalpal Internal Medicine Clinic, 369, Haeundae-ro, Haeundae-gu, Busan 48062, Republic of Korea.

Department of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 Aug 29;15(17):2191. doi: 10.3390/diagnostics15172191.

Abstract

Elastography is a non-invasive imaging technique that assesses tissue stiffness and elasticity. This study aimed to evaluate the diagnostic performance and clinical utility of elastography and S-detect in distinguishing benign from malignant thyroid nodules. S-detect (RS85) is a deep learning-based computer-aided diagnosis (DL-CAD) software that analyzes grayscale ultrasound 2D images to evaluate the morphological characteristics of thyroid nodules, providing a visual guide to the likelihood of malignancy. This retrospective study included 159 patients (61 male and 98 female) aged 30-83 years (56.14 ± 11.35) who underwent thyroid ultrasonography between January 2023 and June 2024. All the patients underwent elastography, S-detect analysis, and fine needle aspiration cytology (FNAC). Malignancy status was determined based on the FNAC findings, and the diagnostic performance of the elasticity contrast index (ECI), S-detect, and evaluations by a radiologist were assessed. Based on the FNAC results, 101 patients (63.5%) had benign nodules and 58 patients (36.5%) had malignant nodules. Radiologist interpretation demonstrated the highest diagnostic accuracy (area under the curve 89%), with a sensitivity of 98.28%, specificity of 79.21%, positive predictive value (PPV) of 73.1%, and negative predictive value (NPV) of 98.8%. The elasticity contrast index showed an accuracy of 85%, sensitivity of 87.93%, specificity of 81.19%, PPV of 72.9%, and NPV of 92.1%. S-detect yielded the lowest accuracy at 78%, with a sensitivity of 87.93%, specificity of 68.32%, PPV of 61.4%, and NPV of 90.8%. These findings offer valuable insights into the comparative diagnostic utility of elastography and AI-based S-detect for thyroid nodules in clinical practice. Although limited by its single-center design and sample size, which potentially limits the generalization of the results, the controlled environment ensured consistency and minimized confounding variables.

摘要

弹性成像术是一种评估组织硬度和弹性的非侵入性成像技术。本研究旨在评估弹性成像术和S-detect在鉴别甲状腺良恶性结节方面的诊断性能和临床应用价值。S-detect(RS85)是一款基于深度学习的计算机辅助诊断(DL-CAD)软件,可分析灰阶超声二维图像以评估甲状腺结节的形态特征,为恶性可能性提供可视化指导。这项回顾性研究纳入了159例年龄在30至83岁(56.14±11.35)之间的患者(61例男性和98例女性),他们在2023年1月至2024年6月期间接受了甲状腺超声检查。所有患者均接受了弹性成像术、S-detect分析和细针穿刺细胞学检查(FNAC)。根据FNAC结果确定恶性状态,并评估弹性对比指数(ECI)、S-detect的诊断性能以及放射科医生的评估。根据FNAC结果,101例患者(63.5%)有良性结节,58例患者(36.5%)有恶性结节。放射科医生的解读显示出最高的诊断准确性(曲线下面积89%),敏感性为98.28%,特异性为79.21%,阳性预测值(PPV)为73.1%,阴性预测值(NPV)为98.8%。弹性对比指数的准确性为85%,敏感性为87.93%,特异性为81.19%,PPV为72.9%,NPV为92.1%。S-detect的准确性最低,为78%,敏感性为87.93%,特异性为68.32%,PPV为61.4%,NPV为90.8%。这些发现为弹性成像术和基于人工智能的S-detect在临床实践中对甲状腺结节的比较诊断效用提供了有价值的见解。尽管受到单中心设计和样本量的限制,这可能会限制结果的推广,但可控环境确保了一致性并最大限度地减少了混杂变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e67/12427639/78db305fcd7a/diagnostics-15-02191-g001.jpg

相似文献

1
6
Role of Ultrasound Elastography in Evaluating Suspicious Thyroid Nodules.
Indian J Surg Oncol. 2024 Dec;15(4):646-651. doi: 10.1007/s13193-024-01956-4. Epub 2024 May 21.
9
Efficacy Assessment and Influencing Factors on Superb Microvascular Imaging (SMI) Microflow Patterns in Solid Thyroid Nodules: What Matters?
Ultrasound Med Biol. 2025 Sep;51(9):1389-1398. doi: 10.1016/j.ultrasmedbio.2025.04.002. Epub 2025 Jun 14.
10
Free-hand ultrasound strain elastography in evaluation of soft tissue tumors.
J Ultrasound. 2024 Sep;27(3):589-598. doi: 10.1007/s40477-024-00893-w. Epub 2024 Jul 25.

本文引用的文献

2
Approach to Thyroid Nodules: Diagnosis and Treatment.
Cureus. 2024 Jan 13;16(1):e52232. doi: 10.7759/cureus.52232. eCollection 2024 Jan.
4
Application of radiomics and machine learning to thyroid diseases in nuclear medicine: a systematic review.
Rev Endocr Metab Disord. 2024 Feb;25(1):175-186. doi: 10.1007/s11154-023-09822-4. Epub 2023 Jul 12.
5
The 2023 Bethesda System for Reporting Thyroid Cytopathology.
Thyroid. 2023 Sep;33(9):1039-1044. doi: 10.1089/thy.2023.0141. Epub 2023 Jul 8.
6
Comparison of S-Detect and thyroid imaging reporting and data system classifications in the diagnosis of cytologically indeterminate thyroid nodules.
Front Endocrinol (Lausanne). 2023 Jan 24;14:1098031. doi: 10.3389/fendo.2023.1098031. eCollection 2023.
7
Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?
Cancers (Basel). 2022 Jul 10;14(14):3357. doi: 10.3390/cancers14143357.
9
Drivers of the Decision to Biopsy and Follow-Up of Small Suspicious Thyroid Nodules.
Endocr Pract. 2020 Aug;26(8):857-868. doi: 10.4158/EP-2019-0590.
10
Applications of machine learning and deep learning to thyroid imaging: where do we stand?
Ultrasonography. 2021 Jan;40(1):23-29. doi: 10.14366/usg.20068. Epub 2020 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验