Suppr超能文献

放射组学和机器学习在核医学甲状腺疾病中的应用:系统评价。

Application of radiomics and machine learning to thyroid diseases in nuclear medicine: a systematic review.

机构信息

Nuclear Medicine, ASST Spedali Civili di Brescia, P.le Spedali Civili, 1, Brescia, 25123, Italy.

Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy.

出版信息

Rev Endocr Metab Disord. 2024 Feb;25(1):175-186. doi: 10.1007/s11154-023-09822-4. Epub 2023 Jul 12.

Abstract

BACKGROUND

In the last years growing evidences on the role of radiomics and machine learning (ML) applied to different nuclear medicine imaging modalities for the assessment of thyroid diseases are starting to emerge. The aim of this systematic review was therefore to analyze the diagnostic performances of these technologies in this setting.

METHODS

A wide literature search of the PubMed/MEDLINE, Scopus and Web of Science databases was made in order to find relevant published articles about the role of radiomics or ML on nuclear medicine imaging for the evaluation of different thyroid diseases.

RESULTS

Seventeen studies were included in the systematic review. Radiomics and ML were applied for assessment of thyroid incidentalomas at  F-FDG PET, evaluation of cytologically indeterminate thyroid nodules, assessment of thyroid cancer and classification of thyroid diseases using nuclear medicine techniques.

CONCLUSION

Despite some intrinsic limitations of radiomics and ML may have affect the results of this review, these technologies seem to have a promising role in the assessment of thyroid diseases. Validation of preliminary findings in multicentric studies is needed to translate radiomics and ML approaches in the clinical setting.

摘要

背景

近年来,越来越多的证据表明,放射组学和机器学习(ML)应用于不同的核医学成像方式,在评估甲状腺疾病方面的作用开始显现。因此,本系统评价的目的是分析这些技术在这种情况下的诊断性能。

方法

为了找到关于核医学成像中放射组学或 ML 对不同甲状腺疾病评估作用的相关文献,我们在 PubMed/MEDLINE、Scopus 和 Web of Science 数据库中进行了广泛的文献检索。

结果

本系统评价共纳入 17 项研究。放射组学和 ML 被应用于评估氟-18 氟代脱氧葡萄糖(F-FDG)PET 中的甲状腺偶发瘤、评估细胞学不确定的甲状腺结节、评估甲状腺癌以及使用核医学技术对甲状腺疾病进行分类。

结论

尽管放射组学和 ML 的一些内在局限性可能会影响本研究的结果,但这些技术在评估甲状腺疾病方面似乎具有广阔的应用前景。需要在多中心研究中验证初步发现,以将放射组学和 ML 方法转化到临床实践中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验