Suppr超能文献

通过纳米结构与化学气相沉积相结合实现具有增强耐腐蚀性的超疏水铜表面的可扩展工程。

Scalable Engineering of Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance by Combined Nanostructuring and Chemical Vapor Deposition.

作者信息

Rahul N, Park Beomguk, Pradhan Sanjaya Kumar, Sung Ho-Eon, Jeong Inn-Hyup, Yun Yong-Sup, Oh Min-Suk

机构信息

Division of Advanced Materials Engineering, Department of Energy Storage and Conversion Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.

R&D Department, MOLIT Co., Ltd., Hanam 12930, Republic of Korea.

出版信息

Materials (Basel). 2025 Aug 25;18(17):3981. doi: 10.3390/ma18173981.

Abstract

The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process with atmospheric pressure chemical vapor deposition (APCVD) of a perfluorinated silane. The hierarchical CuO nanostructures formed via alkaline oxidation serve as a robust layer, while subsequent silane functionalization imparts low surface energy, resulting in surfaces with water contact angles exceeding 170° and minimal contact angle hysteresis. Comprehensive surface characterization by SEM and roughness analysis confirmed the preservation of hierarchical morphology after coating. Wettability studies reveal a transition from hydrophilic to superhydrophobic behavior, with the Cassie-Baxter regime achieved on nanostructured and silane-functionalized samples, leading to enhanced droplet mobility and self-cleaning effect. Salt spray tests demonstrate that the superhydrophobic surfaces exhibit a corrosion rate reduction of 85.7% (from 2.51 mm/year for bare copper to 0.36 mm/year for the treated surface), indicating a seven-fold improvement in corrosion resistance compared to bare copper. This methodology offers a practical, reproducible route to multifunctional copper surfaces, advancing their potential for use in anti-fouling, self-cleaning, and long-term protective applications.

摘要

在潮湿和含盐环境中,铜的易腐蚀性仍然是其长期使用面临的关键挑战。在这项工作中,我们提出了一种简化且可扩展的方法,通过将简单的湿化学氧化过程与全氟硅烷的常压化学气相沉积(APCVD)相结合,来制备超疏水、耐腐蚀的铜表面。通过碱性氧化形成的分级CuO纳米结构作为坚固的层,而随后的硅烷功能化赋予低表面能,从而得到水接触角超过170°且接触角滞后极小的表面。通过扫描电子显微镜(SEM)进行的全面表面表征和粗糙度分析证实了涂层后分级形态的保留。润湿性研究揭示了从亲水性到超疏水性行为的转变,在纳米结构和硅烷功能化的样品上实现了Cassie-Baxter状态,从而提高了液滴的流动性和自清洁效果。盐雾试验表明,超疏水表面的腐蚀速率降低了85.7%(从裸铜的2.51毫米/年降至处理后表面的0.36毫米/年),表明与裸铜相比,耐腐蚀性提高了七倍。这种方法为制备多功能铜表面提供了一条实用、可重复的途径,提升了其在防污、自清洁和长期保护应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/966b/12429585/98dd81d63850/materials-18-03981-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验