College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates.
Sensors (Basel). 2024 Aug 13;24(16):5231. doi: 10.3390/s24165231.
This study delves into decoding hand gestures using surface electromyography (EMG) signals collected via a precision Myo-armband sensor, leveraging machine learning algorithms. The research entails rigorous data preprocessing to extract features and labels from raw EMG data. Following partitioning into training and testing sets, four traditional machine learning models are scrutinized for their efficacy in classifying finger movements across seven distinct gestures. The analysis includes meticulous parameter optimization and five-fold cross-validation to evaluate model performance. Among the models assessed, the Random Forest emerges as the top performer, consistently delivering superior precision, recall, and F1-score values across gesture classes, with ROC-AUC scores surpassing 99%. These findings underscore the Random Forest model as the optimal classifier for our EMG dataset, promising significant advancements in healthcare rehabilitation engineering and enhancing human-computer interaction technologies.
本研究利用精密 Myo 臂带传感器采集的表面肌电图 (EMG) 信号,通过机器学习算法来解码手势。研究包括对原始 EMG 数据进行严格的数据预处理,以提取特征和标签。在将数据划分为训练集和测试集后,我们仔细研究了四个传统的机器学习模型,以评估它们在对七个不同手势的手指运动进行分类方面的效果。分析包括对参数进行精心优化和五折交叉验证,以评估模型的性能。在评估的模型中,随机森林模型表现最佳,在所有手势类别中始终能提供更高的精度、召回率和 F1 分数,ROC-AUC 分数超过 99%。这些发现突显了随机森林模型作为我们 EMG 数据集的最佳分类器,有望在医疗康复工程和增强人机交互技术方面取得重大进展。