Suppr超能文献

用于发酵定量预测的压力引导长短期记忆网络建模

Pressure-Guided LSTM Modeling for Fermentation Quantification Prediction.

作者信息

Lee Jooho, Jeong Jieun, Kim Sangoh

机构信息

Department of Food Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea.

出版信息

Sensors (Basel). 2025 Aug 23;25(17):5251. doi: 10.3390/s25175251.

Abstract

Despite significant advancements in sensor technologies, real-time monitoring and prediction of fermentation dynamics remain challenging due to the complexity and nonlinearity of environmental variables. This study presents an integrated framework that combines deep learning techniques with blockchain-enabled data logging to enhance the reliability and transparency of fermentation monitoring. A Long Short-Term Memory (LSTM)-based Fermentation Process Prediction Model (FPPM) was developed to predict Fermentation Percent () and cumulative Fermentation Quantification () using multivariate time-series data obtained from modular sensor units (PBSU, GBSU, and FQSU). Fermentation conditions were systematically varied under controlled environments, and all data were securely transmitted to a Fermentation-Blockchain-Cloud System (FBCS) to ensure data integrity and traceability. The LSTM models trained on AAG1-3 datasets demonstrated high predictive accuracy, with coefficients of determination (R) between 0.8547 and 0.9437, and the estimated values showed strong concordance with actual measurements. These results underscore the feasibility of integrating AI-driven prediction models with decentralized data infrastructure for robust and scalable bioprocess control.

摘要

尽管传感器技术取得了重大进展,但由于环境变量的复杂性和非线性,发酵动力学的实时监测和预测仍然具有挑战性。本研究提出了一个集成框架,将深度学习技术与基于区块链的数据记录相结合,以提高发酵监测的可靠性和透明度。开发了一种基于长短期记忆(LSTM)的发酵过程预测模型(FPPM),使用从模块化传感器单元(PBSU、GBSU和FQSU)获得的多变量时间序列数据来预测发酵百分比()和累积发酵量化()。在受控环境下系统地改变发酵条件,并将所有数据安全地传输到发酵区块链云系统(FBCS),以确保数据的完整性和可追溯性。在AAG1-3数据集上训练的LSTM模型显示出较高的预测准确性,决定系数(R)在0.8547至0.9437之间,估计值与实际测量值显示出很强的一致性。这些结果强调了将人工智能驱动的预测模型与去中心化数据基础设施集成以实现强大且可扩展的生物过程控制的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8205/12431037/f3c82c921ee7/sensors-25-05251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验