Amangeldy Bibars, Tasmurzayev Nurdaulet, Imankulov Timur, Baigarayeva Zhanel, Izmailov Nurdaulet, Riza Tolebi, Abdukarimov Abdulaziz, Mukazhan Miras, Zhumagulov Bakdaulet
LLP «DigitAlem», Almaty 050042, Kazakhstan.
Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
Sensors (Basel). 2025 Aug 24;25(17):5265. doi: 10.3390/s25175265.
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber-physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis of the complete technological evolution from IoT sensors to generative AI. We uniquely frame this progression within a human-centric architecture that integrates digital twins of both the building (DT-B) and its occupants (DT-H), providing a forward-looking perspective on occupant comfort and energy management. We find that deep reinforcement learning (DRL) agents, often developed within physics-calibrated digital twins, reduce annual HVAC demand by 10-35% while maintaining an operative temperature within ±0.5 °C and CO below 800 ppm. These comfort and IAQ targets are consistent with ASHRAE Standard 55 (thermal environmental conditions) and ASHRAE Standard 62.1 (ventilation for acceptable indoor air quality); keeping the operative temperature within ±0.5 °C of the setpoint and indoor CO near or below ~800 ppm reflects commonly adopted control tolerances and per-person outdoor air supply objectives. Regarding energy impacts, simulation studies commonly report higher double-digit reductions, whereas real building deployments typically achieve single- to low-double-digit savings; we therefore report simulation and field results separately. Supervised learners, including gradient boosting and various neural networks, achieve 87-97% accuracy for short-term load, comfort, and fault forecasting. Furthermore, unsupervised models successfully mine large-scale telemetry for anomalies and occupancy patterns, enabling adaptive ventilation that can cut sick building complaints by 40%. Despite these gains, deployment is hindered by fragmented datasets, interoperability issues between legacy BAS and modern IoT devices, and the computer energy and privacy-security costs of large models. The key research priorities include (1) open, high-fidelity IEQ benchmarks; (2) energy-aware, on-device learning architectures; (3) privacy-preserving federated frameworks; (4) hybrid, physics-informed models to win operator trust. Addressing these challenges is pivotal for scaling AI from isolated pilots to trustworthy, human-centric building ecosystems.
人工智能(AI)如今是智能建筑自动化的计算核心,作用于整个网络物理堆栈。本综述调查了关于AI与室内环境质量(IEQ)及能源性能整合的同行评审工作,其独特之处在于对从物联网传感器到生成式AI的完整技术演进进行了全面综合。我们在以人类为中心的架构中独特地构建了这一发展进程,该架构整合了建筑物(DT-B)及其居住者(DT-H)的数字孪生,为居住者舒适度和能源管理提供了前瞻性视角。我们发现,通常在经过物理校准的数字孪生中开发的深度强化学习(DRL)智能体,可将年度暖通空调需求降低10%-35%,同时将运行温度保持在±0.5°C以内,二氧化碳浓度保持在800 ppm以下。这些舒适度和室内空气质量目标与美国采暖、制冷与空调工程师协会(ASHRAE)标准55(热环境条件)和ASHRAE标准62.1(可接受室内空气质量的通风)一致;将运行温度保持在设定值的±0.5°C以内,且室内二氧化碳浓度接近或低于约800 ppm,反映了普遍采用的控制公差和人均室外空气供应目标。关于能源影响,模拟研究通常报告有更高的两位数降幅,而实际建筑部署通常实现个位数到低两位数的节能;因此,我们分别报告模拟和实地结果。监督学习器,包括梯度提升和各种神经网络,在短期负荷、舒适度和故障预测方面的准确率达到87%-97%。此外,无监督模型成功挖掘大规模遥测数据以发现异常和占用模式,实现自适应通风,可将病态建筑投诉减少40%。尽管取得了这些成果,但部署仍受到数据集碎片化、传统楼宇自动化系统(BAS)与现代物联网设备之间的互操作性问题以及大型模型的计算机能源和隐私安全成本的阻碍。关键研究重点包括:(1)开放、高保真的IEQ基准;(2)能源感知的设备端学习架构;(3)隐私保护联邦框架;(4)混合的、基于物理的模型以赢得运营商信任。应对这些挑战对于将AI从孤立试点扩展到值得信赖的、以人类为中心的建筑生态系统至关重要。