Suppr超能文献

基于物理信息导向图网络的温度预测模型。

Physics-Informed Directed Graph Network-Based Temperature Forecasting Model.

作者信息

Cai Jinjing, Su Binting, Chen Shuping, Fang He

机构信息

Fujian Province Warning Information Release Center, FuZhou 350000, China.

College of Computer and Cyber Security, Fujian Normal University, FuZhou 350117, China.

出版信息

Sensors (Basel). 2025 Aug 26;25(17):5295. doi: 10.3390/s25175295.

Abstract

Recently, there has been a dramatic rise in the demand for accurate temperature forecasts. However, challenges arise from modeling and fusing complex spatial and temporal features in temperature data. In this study, we propose a physics-informed directed-graph-based temperature prediction model to mitigate the challenges of purely data-driven prediction algorithms. Firstly, a directed graph design module was designed and then used to construct an asymmetric adjacency matrix based on the locations of temperature-monitoring stations. This module can capture the asymmetric relations between temperature data at different stations. Then, the directed adjacency matrix was incorporated into the graph attention module and the graph-gating module to extract the spatial and temporal features of the temperature data, and a fusion module was designed to integrate the spatial-temporal features and the directed graph adjacency matrix to provide better temperature prediction performance. Numerical simulations based on a real-world dataset collected in southern China demonstrate that our proposed physics-informed temperature prediction model can deliver superior prediction performance with a mean absolute error of less than 0.75 °C.

摘要

最近,对精确温度预测的需求急剧上升。然而,在对温度数据中的复杂时空特征进行建模和融合时会出现挑战。在本研究中,我们提出了一种基于物理知识的有向图温度预测模型,以缓解纯数据驱动预测算法的挑战。首先,设计了一个有向图设计模块,然后基于温度监测站的位置构建一个不对称邻接矩阵。该模块可以捕捉不同站点温度数据之间的不对称关系。然后,将有向邻接矩阵纳入图注意力模块和图门控模块,以提取温度数据的时空特征,并设计了一个融合模块来整合时空特征和有向图邻接矩阵,以提供更好的温度预测性能。基于中国南方收集的真实数据集进行的数值模拟表明,我们提出的基于物理知识的温度预测模型能够提供卓越的预测性能,平均绝对误差小于0.75°C。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1f/12431133/9c2efc3284fb/sensors-25-05295-g001.jpg

相似文献

1
Physics-Informed Directed Graph Network-Based Temperature Forecasting Model.
Sensors (Basel). 2025 Aug 26;25(17):5295. doi: 10.3390/s25175295.
3
Spatio-temporal transformer and graph convolutional networks based traffic flow prediction.
Sci Rep. 2025 Jul 7;15(1):24299. doi: 10.1038/s41598-025-10287-5.
5
6
Enhancing epidemic forecasting with a physics-informed spatial identity neural network.
PLoS One. 2025 Sep 15;20(9):e0331611. doi: 10.1371/journal.pone.0331611. eCollection 2025.

本文引用的文献

1
Monthly climate prediction using deep convolutional neural network and long short-term memory.
Sci Rep. 2024 Jul 31;14(1):17748. doi: 10.1038/s41598-024-68906-6.
2
Correlation-Aware Spatial-Temporal Graph Learning for Multivariate Time-Series Anomaly Detection.
IEEE Trans Neural Netw Learn Syst. 2023 Nov 14;PP. doi: 10.1109/TNNLS.2023.3325667.
3
Temperature prediction of solar greenhouse based on NARX regression neural network.
Sci Rep. 2023 Jan 28;13(1):1563. doi: 10.1038/s41598-022-24072-1.
4
Aerosol as a critical factor causing forecast biases of air temperature in global numerical weather prediction models.
Sci Bull (Beijing). 2021 Sep 30;66(18):1917-1924. doi: 10.1016/j.scib.2021.05.009. Epub 2021 May 14.
5
Reinforcing Generated Images via Meta-Learning for One-Shot Fine-Grained Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1455-1463. doi: 10.1109/TPAMI.2022.3167112. Epub 2024 Feb 6.
6
Dataset Bias in Few-Shot Image Recognition.
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):229-246. doi: 10.1109/TPAMI.2022.3153611. Epub 2022 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验