Suppr超能文献

利用物理信息空间识别神经网络增强疫情预测

Enhancing epidemic forecasting with a physics-informed spatial identity neural network.

作者信息

Fujita Satoki, Akutsu Tatsuya

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.

出版信息

PLoS One. 2025 Sep 15;20(9):e0331611. doi: 10.1371/journal.pone.0331611. eCollection 2025.

Abstract

Forecasting the future number of confirmed cases in each region is a critical challenge in controlling the spread of infectious diseases. Accurate predictions enable the proactive development of optimal containment strategies. Recently, deep learning-based models have increasingly leveraged graph structures to capture the spatial dynamics of epidemic spread. While intuitive, this approach often increases model complexity, and the resulting performance gains may not justify the added burden. In some cases, it may even lead to overfitting. Moreover, infectious disease data is typically noisy, making it difficult to extract infectious disease-specific dynamics from data without guidance based on epidemiological domain knowledge. To address these issues, we propose a simple yet effective hybrid model for multi-region epidemic forecasting, termed Physics-Informed Spatial IDentity neural network (PISID). This model integrates a spatio-temporal identity (STID)-based neural network module, which encodes spatio-temporal information without relying on graph structures, with an SIR module grounded in classical epidemiological dynamics. Regional characteristics are incorporated via a spatial embedding matrix, and epidemiological parameters are inferred through a fully connected neural network. These parameters are then used to govern the dynamics of the SIR model for forecasting purposes. Experiments on real-world datasets demonstrate that the proposed PISID model achieves stable and superior predictive performance compared to baseline models, with approximately 27K parameters and an average training time of 0.45 seconds per epoch. Additionally, ablation studies validate the effectiveness of the neural network's encoding architecture, and analysis of the decoded epidemiological parameters highlights the model's interpretability. Overall, PISID contributes to reliable epidemic forecasting by integrating data-driven learning with epidemiological domain knowledge.

摘要

预测每个地区未来的确诊病例数是控制传染病传播的一项关键挑战。准确的预测能够主动制定最优的防控策略。最近,基于深度学习的模型越来越多地利用图结构来捕捉疫情传播的空间动态。虽然这种方法直观,但往往会增加模型的复杂性,而由此带来的性能提升可能无法证明增加的负担是合理的。在某些情况下,它甚至可能导致过拟合。此外,传染病数据通常存在噪声,在没有基于流行病学领域知识的指导下,很难从数据中提取传染病特有的动态信息。为了解决这些问题,我们提出了一种简单而有效的用于多地区疫情预测的混合模型,称为物理信息空间恒等神经网络(PISID)。该模型将一个基于时空恒等(STID)的神经网络模块与一个基于经典流行病学动态的SIR模块相结合,前者在不依赖图结构的情况下编码时空信息,后者则基于经典流行病学动态。通过空间嵌入矩阵纳入区域特征,并通过全连接神经网络推断流行病学参数。然后,这些参数被用于控制SIR模型的动态变化以进行预测。在真实世界数据集上的实验表明,与基线模型相比,所提出的PISID模型实现了稳定且卓越的预测性能,拥有约27000个参数,每个epoch的平均训练时间为0.45秒。此外,消融研究验证了神经网络编码架构的有效性,对解码后的流行病学参数的分析突出了该模型的可解释性。总体而言,PISID通过将数据驱动学习与流行病学领域知识相结合,为可靠的疫情预测做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1c8/12435659/ee79c3deeb3b/pone.0331611.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验