Suppr超能文献

基于自动编码器的医学图像分析自我监督测试时自适应。

Autoencoder based self-supervised test-time adaptation for medical image analysis.

机构信息

Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Med Image Anal. 2021 Aug;72:102136. doi: 10.1016/j.media.2021.102136. Epub 2021 Jun 19.

Abstract

Deep neural networks have been successfully applied to medical image analysis tasks like segmentation and synthesis. However, even if a network is trained on a large dataset from the source domain, its performance on unseen test domains is not guaranteed. The performance drop on data obtained differently from the network's training data is a major problem (known as domain shift) in deploying deep learning in clinical practice. Existing work focuses on retraining the model with data from the test domain, or harmonizing the test domain's data to the network training data. A common practice is to distribute a carefully-trained model to multiple users (e.g., clinical centers), and then each user uses the model to process their own data, which may have a domain shift (e.g., varying imaging parameters and machines). However, the lack of availability of the source training data and the cost of training a new model often prevents the use of known methods to solve user-specific domain shifts. Here, we ask whether we can design a model that, once distributed to users, can quickly adapt itself to each new site without expensive retraining or access to the source training data? In this paper, we propose a model that can adapt based on a single test subject during inference. The model consists of three parts, which are all neural networks: a task model (T) which performs the image analysis task like segmentation; a set of autoencoders (AEs); and a set of adaptors (As). The task model and autoencoders are trained on the source dataset and can be computationally expensive. In the deployment stage, the adaptors are trained to transform the test image and its features to minimize the domain shift as measured by the autoencoders' reconstruction loss. Only the adaptors are optimized during the testing stage with a single test subject thus is computationally efficient. The method was validated on both retinal optical coherence tomography (OCT) image segmentation and magnetic resonance imaging (MRI) T1-weighted to T2-weighted image synthesis. Our method, with its short optimization time for the adaptors (10 iterations on a single test subject) and its additional required disk space for the autoencoders (around 15 MB), can achieve significant performance improvement. Our code is publicly available at: https://github.com/YufanHe/self-domain-adapted-network.

摘要

深度神经网络已成功应用于医学图像分析任务,如分割和合成。然而,即使网络是在源域的大型数据集上进行训练的,其在未见测试域上的性能也无法保证。在网络训练数据之外的数据上性能下降是将深度学习应用于临床实践中的一个主要问题(称为域转移)。现有的工作侧重于使用测试域中的数据重新训练模型,或者使测试域的数据与网络训练数据协调一致。一种常见的做法是将精心训练的模型分发给多个用户(例如临床中心),然后每个用户使用模型处理自己的数据,这些数据可能存在域转移(例如,成像参数和机器的变化)。但是,源训练数据的可用性和训练新模型的成本常常会阻止使用已知方法来解决特定用户的域转移问题。在这里,我们是否可以设计一种模型,该模型一旦分发给用户,就可以在没有昂贵的重新训练或访问源训练数据的情况下,快速适应每个新站点?在本文中,我们提出了一种可以在推理过程中基于单个测试对象进行自适应的模型。该模型由三部分组成,均为神经网络:执行图像分析任务(如分割)的任务模型(T);一组自动编码器(AEs);和一组适配器(As)。任务模型和自动编码器是在源数据集上进行训练的,这可能需要大量的计算资源。在部署阶段,适配器被训练以最小化自动编码器的重构损失来转换测试图像及其特征,从而达到域转移。仅在测试阶段使用单个测试对象优化适配器,因此计算效率高。该方法在视网膜光学相干断层扫描(OCT)图像分割和磁共振成像(MRI)T1 加权到 T2 加权图像合成上均得到了验证。我们的方法,其适配器的优化时间很短(单个测试对象上的 10 次迭代),并且自动编码器所需的额外磁盘空间(约 15MB),可以实现显著的性能提升。我们的代码可在以下网址获得:https://github.com/YufanHe/self-domain-adapted-network。

相似文献

1
Autoencoder based self-supervised test-time adaptation for medical image analysis.
Med Image Anal. 2021 Aug;72:102136. doi: 10.1016/j.media.2021.102136. Epub 2021 Jun 19.
2
S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
Med Image Anal. 2021 Dec;74:102214. doi: 10.1016/j.media.2021.102214. Epub 2021 Aug 12.
3
4
Two-stage adversarial learning based unsupervised domain adaptation for retinal OCT segmentation.
Med Phys. 2024 Aug;51(8):5374-5385. doi: 10.1002/mp.17012. Epub 2024 Mar 1.
5
Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation.
IEEE Trans Med Imaging. 2020 Jul;39(7):2531-2540. doi: 10.1109/TMI.2020.2973595. Epub 2020 Feb 12.
6
Test-time adaptable neural networks for robust medical image segmentation.
Med Image Anal. 2021 Feb;68:101907. doi: 10.1016/j.media.2020.101907. Epub 2020 Nov 19.
7
Adaptive wavelet-VNet for single-sample test time adaptation in medical image segmentation.
Med Phys. 2024 Dec;51(12):8865-8881. doi: 10.1002/mp.17423. Epub 2024 Oct 1.
8
Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain Adaptation.
IEEE Trans Med Imaging. 2021 Oct;40(10):2926-2938. doi: 10.1109/TMI.2021.3059265. Epub 2021 Sep 30.
10
Self-training adversarial learning for cross-domain retinal OCT fluid segmentation.
Comput Biol Med. 2023 Mar;155:106650. doi: 10.1016/j.compbiomed.2023.106650. Epub 2023 Feb 10.

引用本文的文献

2
Computer vision to predict cell seeding coverage in re-endothelialized mouse lungs.
Sci Rep. 2025 Jul 19;15(1):26236. doi: 10.1038/s41598-025-11272-8.
3
Deep learning for hydrocephalus prognosis: Advances, challenges, and future directions: A review.
Medicine (Baltimore). 2025 Jun 27;104(26):e43082. doi: 10.1097/MD.0000000000043082.
4
Research progress on risk prediction models for the diabetic foot.
Acta Diabetol. 2025 Apr 19. doi: 10.1007/s00592-025-02505-3.
5
C MAL: cascaded network-guided class-balanced multi-prototype auxiliary learning for source-free domain adaptive medical image segmentation.
Med Biol Eng Comput. 2025 May;63(5):1551-1570. doi: 10.1007/s11517-025-03287-0. Epub 2025 Jan 20.
6
Visualization Methods for DNA Sequences: A Review and Prospects.
Biomolecules. 2024 Nov 14;14(11):1447. doi: 10.3390/biom14111447.
7
MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:5851-5862. doi: 10.1109/cvpr52733.2024.00559. Epub 2024 Sep 16.
8
An intensity-based self-supervised domain adaptation method for intervertebral disc segmentation in magnetic resonance imaging.
Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1753-1761. doi: 10.1007/s11548-024-03219-7. Epub 2024 Jul 8.
9
Federated learning for medical image analysis: A survey.
Pattern Recognit. 2024 Jul;151. doi: 10.1016/j.patcog.2024.110424. Epub 2024 Mar 12.
10
Source-free unsupervised domain adaptation: A survey.
Neural Netw. 2024 Jun;174:106230. doi: 10.1016/j.neunet.2024.106230. Epub 2024 Mar 11.

本文引用的文献

1
CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation.
Med Image Anal. 2021 Apr;69:101950. doi: 10.1016/j.media.2020.101950. Epub 2020 Dec 25.
2
Test-time adaptable neural networks for robust medical image segmentation.
Med Image Anal. 2021 Feb;68:101907. doi: 10.1016/j.media.2020.101907. Epub 2020 Nov 19.
3
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
4
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14.
5
Unsupervised MR-to-CT Synthesis Using Structure-Constrained CycleGAN.
IEEE Trans Med Imaging. 2020 Dec;39(12):4249-4261. doi: 10.1109/TMI.2020.3015379. Epub 2020 Nov 30.
6
Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation.
IEEE Trans Med Imaging. 2020 Jul;39(7):2531-2540. doi: 10.1109/TMI.2020.2973595. Epub 2020 Feb 12.
7
Fully Convolutional Boundary Regression for Retina OCT Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11764:120-128. doi: 10.1007/978-3-030-32239-7_14. Epub 2019 Oct 10.
8
Missing MRI Pulse Sequence Synthesis Using Multi-Modal Generative Adversarial Network.
IEEE Trans Med Imaging. 2020 Apr;39(4):1170-1183. doi: 10.1109/TMI.2019.2945521. Epub 2019 Oct 4.
9
Evaluating the Impact of Intensity Normalization on MR Image Synthesis.
Proc SPIE Int Soc Opt Eng. 2019 Mar;10949. doi: 10.1117/12.2513089.
10
Applications of a deep learning method for anti-aliasing and super-resolution in MRI.
Magn Reson Imaging. 2019 Dec;64:132-141. doi: 10.1016/j.mri.2019.05.038. Epub 2019 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验