Ahmed Helal, Patnana Pradeep Kumar, Al-Matary Yahya S, Fiori Maren, Vorwerk Jan, Ahmad Marah H, Dazert Eva, Oelschläger Lorenz, Künstner Axel, Opalka Bertram, von Bubnoff Nikolas, Khandanpour Cyrus
Medical Department A, University Hospital Münster, 48149 Münster, Germany.
Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23538 Lübeck, Germany.
Int J Mol Sci. 2025 Aug 27;26(17):8301. doi: 10.3390/ijms26178301.
Acute myeloid leukemia (AML) proliferation is significantly influenced by the interactions between leukemia blasts and the bone marrow (BM) microenvironment. Specifically, bone marrow mesenchymal stem cells (BMSCs) derived from AML patients (AML-MSCs) are known to support leukemia growth and facilitate disease progression. Studies have demonstrated that the transfer of mitochondria from MSCs to AML blasts not only aids in disease progression but also contributes to chemotherapy resistance. Furthermore, BM stromal cells can trigger a metabolic shift in malignant cells from mitochondrial respiration to glycolysis, which enhances both growth and chemo-resistance. This study focuses on identifying transcriptional and metabolic alterations in AML-MSCs to uncover potential targeted therapies for AML. We employed RNA sequencing and microarray analysis on MSCs cocultured with leukemic cells () and on MSCs isolated from both non-leukemic and leukemic mice. The Gene Set Enrichment Analysis (GSEA) indicated a significant downregulation of gene sets associated with oxidative phosphorylation and glycolysis in AML-MSCs. Furthermore, coculture of MSCs from wild-type mice (WT-MSCs) and a healthy donor individual (HD-MSCs) with AML cells demonstrated reduced oxidative phosphorylation and glycolysis. These metabolic changes were consistent in AML-MSCs derived from both leukemic mice and patients. Our results indicate that AML cells diminish the metabolic capacity of MSCs, specifically targeting oxidative phosphorylation and glycolysis. These findings suggest potential metabolic vulnerabilities that could be exploited to develop more effective therapeutic strategies for AML.
急性髓系白血病(AML)的增殖受到白血病原始细胞与骨髓(BM)微环境之间相互作用的显著影响。具体而言,已知源自AML患者的骨髓间充质干细胞(BMSC,即AML-MSC)可支持白血病生长并促进疾病进展。研究表明,线粒体从MSC转移至AML原始细胞不仅有助于疾病进展,还会导致化疗耐药。此外,BM基质细胞可触发恶性细胞从线粒体呼吸向糖酵解的代谢转变,这会增强细胞生长和化疗耐药性。本研究聚焦于识别AML-MSC中的转录和代谢改变,以揭示AML潜在的靶向治疗方法。我们对与白血病细胞共培养的MSC以及从非白血病和白血病小鼠中分离出的MSC进行了RNA测序和微阵列分析。基因集富集分析(GSEA)表明,AML-MSC中与氧化磷酸化和糖酵解相关的基因集显著下调。此外,野生型小鼠的MSC(WT-MSC)和健康供体个体的MSC(HD-MSC)与AML细胞共培养显示氧化磷酸化和糖酵解减少。这些代谢变化在源自白血病小鼠和患者的AML-MSC中是一致的。我们的结果表明,AML细胞降低了MSC的代谢能力,特别是针对氧化磷酸化和糖酵解。这些发现提示了潜在的代谢弱点,可利用这些弱点开发更有效的AML治疗策略。