Alibrandi Simona, Mordà Domenico, Scimone Concetta, D'ascola Angela, Aliquò Federica, Pozzato Alessandro, Scalinci Sergio Zaccaria, D'Angelo Rosalia, Sidoti Antonina, Donato Luigi
Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy.
Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy.
Int J Mol Sci. 2025 Sep 4;26(17):8614. doi: 10.3390/ijms26178614.
Oxidative stress destabilizes microRNA homeostasis in the retinal pigment epithelium (RPE), driving apoptosis and the epithelial-to-mesenchymal transition, which contribute to age-related macular degeneration. We investigated whether Quantum Molecular Resonance (QMR) electrostimulation, alone or combined with Patient Blood-Derived (PBD) secretoma, can reprogram the RPE miRNome and mitigate stress-induced damage. Human ARPE-19 cells were exposed to tert-butyl-hydroperoxide and treated with QMR, PBD secretome, or their combination. The deep sequencing of small RNAs at 24 h and 72 h, followed by differential expression and pathway enrichment analyses, delineated treatment-driven miRNA signatures. Oxidative stress deregulated > 50 miRNAs, enriching pro-apoptotic, fibrotic, and inflammatory pathways. QMR restored roughly 40% of these miRNAs and upregulated additional cytoprotective species such as miR-590-3p, a known regulator of the NF-κB and NLRP3 pathways according to validated target databases. While these observations suggest the potential involvement of inflammatory and stress-related cascades, functional assays will be required to directly confirm such effects. Secretome treatment preferentially increased anti-inflammatory miR-146a-5p and regenerative miR-204-5p while suppressing pro-fibrotic let-7f-5p. Combined QMR + secretome triggered the broadest miRNA response, normalizing over two-thirds of stress-altered miRNAs. These changes are predicted to influence antioxidant, anti-apoptotic, and anti-fibrotic pathways, although they did not translate into additional short-term cytoprotection compared with QMR alone. These data indicate that QMR and PBD secretome modulate complementary miRNA programs that converge on stress response networks. This broader molecular reprogramming may reflect regulatory complementarity, but functional validation is needed to determine whether it provides benefits beyond those observed with QMR alone. These findings offer molecular insights into potential non-invasive, cell-free strategies for retinal degeneration, although in vivo validation will be required before any clinical translation to Age-Related Macular Degeneration (AMD) therapy.
氧化应激破坏视网膜色素上皮(RPE)中的微小RNA稳态,引发细胞凋亡和上皮-间质转化,这两者都与年龄相关性黄斑变性有关。我们研究了量子分子共振(QMR)电刺激单独使用或与患者血液来源(PBD)分泌组联合使用是否能够重新编程RPE微小RNA组并减轻应激诱导的损伤。将人ARPE-19细胞暴露于叔丁基过氧化氢,并分别用QMR、PBD分泌组或它们的组合进行处理。在24小时和72小时对小RNA进行深度测序,随后进行差异表达和通路富集分析,描绘出治疗驱动的微小RNA特征。氧化应激使超过50种微小RNA失调,富集了促凋亡、纤维化和炎症通路。QMR恢复了其中约40%的微小RNA,并上调了其他细胞保护相关的种类,如miR-590-3p,根据经过验证的靶标数据库,它是NF-κB和NLRP3通路的已知调节因子。虽然这些观察结果提示炎症和应激相关级联反应可能参与其中,但仍需要功能测定来直接证实这些作用。分泌组处理优先增加抗炎性的miR-146a-5p和再生相关的miR-204-5p,同时抑制促纤维化的let-7f-5p。QMR与分泌组联合触发了最广泛的微小RNA反应,使超过三分之二的应激改变的微小RNA恢复正常。预计这些变化会影响抗氧化、抗凋亡和抗纤维化通路,尽管与单独使用QMR相比,它们并未转化为额外的短期细胞保护作用。这些数据表明,QMR和PBD分泌组调节互补的微小RNA程序,这些程序汇聚于应激反应网络。这种更广泛的分子重编程可能反映了调节互补性,但需要功能验证来确定它是否能提供超越单独使用QMR所观察到的益处。这些发现为视网膜变性的潜在非侵入性、无细胞策略提供了分子层面的见解,不过在将其临床转化用于年龄相关性黄斑变性(AMD)治疗之前,还需要进行体内验证。