Zhang Zhen, Ji Xiaoyu, Huang Weijia, Mai Qizhen, Cheng Du
PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200437, China.
Int J Mol Sci. 2025 Sep 5;26(17):8671. doi: 10.3390/ijms26178671.
Self-assembly has emerged as a powerful bottom-up strategy for the construction of multifunctional nanocomposites based on upconversion nanoparticles (UCNPs). In contrast to epitaxial shell growth, self-assembly enables the modular integration of UCNPs with a broad spectrum of other functional nanomaterials. This characteristic makes it particularly attractive for various practical applications. This review provides a comprehensive overview of self-assembly methodologies for UCNP-based nanocomposites, including electrostatic interactions, hydrophobic interactions, covalent coupling, and specific biorecognition. The resultant nanohybrids exhibit a wide range of morphologies and functionalities, making them suitable for various applications, including multimodal imaging, bioimaging, advanced biosensing, smart nanocarriers for controlled molecular delivery, and orthogonal photoactivation for programmable therapy. Key recent studies are highlighted to elucidate the structure-function relationships and technological potential of these materials. Additionally, the current challenges, such as stability, reproducibility, and functional integration, and proposed future directions for the development of UCNP-based nanocomposites are further discussed.
自组装已成为一种强大的自下而上的策略,用于构建基于上转换纳米粒子(UCNP)的多功能纳米复合材料。与外延壳生长不同,自组装能够将UCNP与多种其他功能纳米材料进行模块化整合。这一特性使其在各种实际应用中极具吸引力。本文综述全面概述了基于UCNP的纳米复合材料的自组装方法,包括静电相互作用、疏水相互作用、共价偶联和特异性生物识别。所得的纳米杂化物展现出广泛的形态和功能,使其适用于各种应用,包括多模态成像、生物成像、先进的生物传感、用于可控分子递送的智能纳米载体以及用于可编程治疗的正交光激活。重点介绍了近期的关键研究,以阐明这些材料的结构-功能关系和技术潜力。此外,还进一步讨论了当前的挑战,如稳定性、可重复性和功能整合,以及基于UCNP的纳米复合材料未来发展的建议方向。