Alkahtani Masfer, Alzahrani Yahya A, Alromaeh Abdulaziz, Hemmer Philip
Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.
Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
Molecules. 2024 Mar 18;29(6):1350. doi: 10.3390/molecules29061350.
In this work, we successfully integrated fluorescent nanodiamonds (FNDs) and lanthanide ion-doped upconversion nanoparticles (UCNPs) in a nanocomposite structure for simultaneous optical temperature sensing. The effective integration of FND and UCNP shells was confirmed by employing high-resolution TEM imaging, X-ray diffraction, and dual-excitation optical spectroscopy. Furthermore, the synthesized ND@UCNP nanocomposites were tested by making simultaneous optical temperature measurements, and the detected temperatures showed excellent agreement within their sensitivity limit. The simultaneous measurement of temperature using two different modalities having different sensing physics but with the same composite nanoparticles inside is expected to greatly improve the confidence of nanoscale temperature measurements. This should resolve some of the controversy surrounding nanoscale temperature measurements in biological applications.
在这项工作中,我们成功地将荧光纳米金刚石(FNDs)和镧系离子掺杂的上转换纳米粒子(UCNPs)集成到一种纳米复合结构中,用于同时进行光学温度传感。通过高分辨率透射电子显微镜成像、X射线衍射和双激发光谱,证实了FND和UCNP壳层的有效集成。此外,通过同时进行光学温度测量对合成的ND@UCNP纳米复合材料进行了测试,检测到的温度在其灵敏度范围内显示出极好的一致性。使用具有不同传感物理原理但内部含有相同复合纳米粒子的两种不同模式同时测量温度,有望大大提高纳米级温度测量的可信度。这应该能够解决围绕生物应用中纳米级温度测量的一些争议。