Hino Nobumasa, Takada Risa, Suzuki Kyosuke, Tokunoh Nagisa, Karaki Tatsuya, Ohtake Kazumasa, Ogami Haruna, Nishiura Takafumi, Ishimoto Kenji, Tsukamoto Tomohito, Ago Yukio, Okada Yoshiaki, Okamoto Toru, Ono Chikako, Matsuura Yoshiharu, Obika Satoshi, Sakamoto Kensaku, Yoshioka Yasuo, Nakagawa Shinsaku
Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan.
Laboratory of Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan.
Protein Sci. 2025 Oct;34(10):e70306. doi: 10.1002/pro.70306.
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants that evade existing vaccines and antibody therapies necessitate novel, potent, and broad-spectrum antiviral strategies. Enhancing therapeutic proteins with additional covalent binding capabilities, such as minibinders and nanobodies, reportedly potentiates their antiviral efficacy by irreversibly capturing the viral cell-entry protein. However, viral mutations that interfere with covalent bonding or reduce viral affinity with therapeutic proteins might compromise the efficacy of this strategy. Therefore, in this study, we aimed to develop a broadly neutralizing covalent angiotensin-converting enzyme 2-Fc (ACE2-Fc) decoy using a rational design strategy that integrates functional genomics with structural information. Using this approach, we targeted a highly conserved and functionally constrained residue on the viral receptor-binding domain (RBD) and identified tyrosine 473 (Y473) as an optimal target. We engineered ACE2-Fc constructs by replacing glutamate 23 (E23) and threonine 27 (T27) with the non-canonical amino acid-fluorosulfate-L-tyrosine (FSY), generating E23FSY and T27FSY constructs. These constructs formed a specific and efficient covalent bond with Y473 of the RBD. Notably, this covalent capture was retained against the highly mutated Omicron BA.5 RBD. In pseudovirus neutralization assays, both E23FSY and T27FSY exhibited markedly enhanced potency against both wild-type-like (D614G) and Omicron variants compared to their non-covalent counterparts. These results demonstrate that using an inherently escape-resistant decoy receptor to covalently target evolutionarily constrained residues on the viral RBD is a highly efficient strategy for creating potent, broad-spectrum covalent inhibitors against rapidly evolving viruses such as SARS-CoV-2.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的持续进化以及逃避现有疫苗和抗体疗法的变体的出现,需要新颖、有效且广谱的抗病毒策略。据报道,用额外的共价结合能力增强治疗性蛋白质,如微型结合器和纳米抗体,通过不可逆地捕获病毒细胞进入蛋白来增强其抗病毒功效。然而,干扰共价键或降低病毒与治疗性蛋白质亲和力的病毒突变可能会损害该策略的功效。因此,在本研究中,我们旨在利用一种将功能基因组学与结构信息相结合的合理设计策略,开发一种具有广泛中和作用的共价血管紧张素转换酶2-Fc(ACE2-Fc)诱饵。使用这种方法,我们靶向病毒受体结合域(RBD)上一个高度保守且功能受限的残基,并确定酪氨酸473(Y473)为最佳靶点。我们通过用非天然氨基酸氟硫酸-L-酪氨酸(FSY)取代谷氨酸23(E23)和苏氨酸27(T27)来构建ACE2-Fc构建体,生成E23FSY和T27FSY构建体。这些构建体与RBD的Y473形成了特异性且高效的共价键。值得注意的是,这种共价捕获对高度突变的奥密克戎BA.5 RBD仍然有效。在假病毒中和试验中,与非共价对应物相比,E23FSY和T27FSY对野生型样(D614G)和奥密克戎变体均表现出显著增强的效力。这些结果表明,使用一种本质上抗逃逸的诱饵受体共价靶向病毒RBD上进化受限的残基,是一种针对快速进化的病毒(如SARS-CoV-2)创建有效、广谱共价抑制剂的高效策略。