Suppr超能文献

基于盆腔微生物群失调的卵巢储备功能下降预测框架的开发

Development of a predictive framework for ovarian reserve decline based on pelvic microbiota dysbiosis.

作者信息

Luo Jie, Cao Lili, Li Junnan, Zhang Tao, Chu Ketan, Xu Wenxian, Wu Zaigui, Shen Wanting, Zhou Jianhong, Li Chanyuan

机构信息

Women's Hospital, Zhejiang, University School of Medicine, Hangzhou, 310006 Zhejiang China.

Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311199 China.

出版信息

EPMA J. 2025 Aug 9;16(3):589-601. doi: 10.1007/s13167-025-00417-4. eCollection 2025 Sep.

Abstract

BACKGROUND

Diminished ovarian reserve (DOR) is increasingly recognized as a multifactorial condition, not solely related to aging. Emerging evidence suggests that environmental and biological factors, including the pelvic microbiota, may influence ovarian function across different age groups. In this study, we examined the association between pelvic microbiota dysbiosis and DOR, with the broader goal of identifying early microbiota-based markers to support predictive diagnosis, preventive strategies, and personalized reproductive care.

METHODS

Ascitic fluid samples were collected from women with normal ovarian reserve and those diagnosed with DOR. Microbial profiling was performed using 16S ribosomal RNA (rRNA) gene sequencing to compare the composition and diversity of the pelvic microbiota between the two groups. A multivariable predictive model was constructed by combining key microbial genera with clinical indicators such as body mass index (BMI), aiming to support early risk estimation of DOR.

RESULTS

Microbial analysis revealed a significantly higher abundance of in the DOR group compared to controls, suggesting its potential role as a microbial marker of diminished ovarian reserve. The predictive model integrating microbial and clinical data demonstrated moderate accuracy, with an area under the curve (AUC) of 0.88 ± 0.16.

CONCLUSIONS

Women with a BMI ≥ 24.0 face an increased risk of ovarian function decline. If pelvic microbiota profiling further reveals dysbiosis, particularly enrichment, early microbial screening and individualized probiotic treatment with or may be warranted. This strategy embodies the core principles of predictive, preventive, and personalized medicine (PPPM/3PM).

摘要

背景

卵巢储备功能减退(DOR)越来越被认为是一种多因素疾病,并非仅与衰老相关。新出现的证据表明,环境和生物因素,包括盆腔微生物群,可能在不同年龄组中影响卵巢功能。在本研究中,我们研究了盆腔微生物群失调与DOR之间的关联,其更广泛的目标是确定基于微生物群的早期标志物,以支持预测性诊断、预防策略和个性化生殖护理。

方法

从卵巢储备功能正常和被诊断为DOR的女性中收集腹水样本。使用16S核糖体RNA(rRNA)基因测序进行微生物谱分析,以比较两组盆腔微生物群的组成和多样性。通过将关键微生物属与体重指数(BMI)等临床指标相结合,构建了一个多变量预测模型,旨在支持DOR的早期风险估计。

结果

微生物分析显示,与对照组相比,DOR组中 的丰度显著更高,表明其作为卵巢储备功能减退的微生物标志物的潜在作用。整合微生物和临床数据的预测模型显示出中等准确性,曲线下面积(AUC)为0.88±0.16。

结论

BMI≥24.0的女性面临卵巢功能下降的风险增加。如果盆腔微生物群分析进一步显示失调,特别是 富集,可能有必要进行早期微生物筛查和使用 或 进行个性化益生菌治疗。该策略体现了预测性、预防性和个性化医学(PPPM/3PM)的核心原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5858/12423008/f682e9cfd088/13167_2025_417_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验