Dura Joseph A, Kim Sangcheol, Page Kirt A, Soles Christopher L
NIST Center for Neutron Research, 100 Bureau Dr. Gaithersburg, Maryland 20899, United States.
Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road, Northbrook, Illinois 60062, United States.
Chem Mater. 2025 Aug 18;37(17):6921-6931. doi: 10.1021/acs.chemmater.5c01738. eCollection 2025 Sep 9.
Owing to its unique mechanical properties, chemical resistance, and ion conductivity, Nafion is one of the most widely used polymer electrolytes. In hydrogen fuel cells, it constitutes both the macroscopic membrane separating the anode and the cathode, and as a thin film, Nafion appears as a binder in the catalyst layer where conductive ionic pathways must intimately interface with platinum catalyst particles, electrically conductive carbon particles, and porous surfaces that facilitate the transport of gases. Residing at the intersection of this diverse range of materials, the ionomer's interfacial structure influences interfacial impedance and thus device performance. This interface structure has been widely investigated on model surfaces with neutron reflectometry and other techniques, resulting in the discovery of a multilamellar structure at the interface with hydrophilic materials, or a single water-rich layer at the interface with, e.g., metals, favoring tangential vs perpendicular ion transport, respectively. Here we demonstrate that self-assembled monolayers, SAMs, which can coat various surfaces, can control whether single or multiple lamellae occur. These interfacial structures can be further modified through acid-base interactions by protonating the terminal amine group of a SAM at low pH. This establishes a methodology to control the interfacial ionic transport pathways in Nafion and determine the interfacial impedance.
由于其独特的机械性能、耐化学性和离子导电性,Nafion是应用最为广泛的聚合物电解质之一。在氢燃料电池中,它既构成了分隔阳极和阴极的宏观膜,又作为一种薄膜,在催化剂层中充当粘合剂,在该层中导电离子通道必须与铂催化剂颗粒、导电碳颗粒以及有助于气体传输的多孔表面紧密结合。离子聚合物处于这多种材料的交汇处,其界面结构会影响界面阻抗,进而影响器件性能。人们已利用中子反射测量法和其他技术对模型表面上的这种界面结构展开了广泛研究,结果发现在与亲水性材料的界面处存在多层结构,而在与金属等材料的界面处则存在单一的富水层,这分别有利于切向和垂直方向的离子传输。在此,我们证明能够覆盖各种表面的自组装单分子层(SAMs)可以控制出现单层还是多层薄片结构。通过在低pH值下使SAM的末端胺基质子化,可利用酸碱相互作用进一步修饰这些界面结构。这建立了一种控制Nafion中界面离子传输途径并确定界面阻抗的方法。