Roczkowsky Andrej, Rachubinski Richard A, Hobman Tom C, Power Christopher
Department of Medicine, University of Alberta, Edmonton, AB, Canada.
Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.
Front Mol Neurosci. 2025 Aug 29;18:1642590. doi: 10.3389/fnmol.2025.1642590. eCollection 2025.
Peroxisomes are membrane-bounded organelles that contribute to a range of physiological functions in eukaryotic cells. In the central nervous system (CNS), peroxisomes are implicated in several vital homeostatic functions including, but not limited to, reactive oxygen species signaling and homeostasis; generation of critical myelin sheath components (including ether phospholipids); biosynthesis of neuroprotective docosahexaenoic acid; breakdown of neurotoxic metabolites (such as very-long chain fatty acids); and, intriguingly, glial activation and response to inflammatory stimuli. Indeed, peroxisomes play a critical role in modulating inflammatory responses and are key regulators of the mitochondrial antiviral signaling (MAVS) protein-mediated response to infections. The importance of peroxisomes in CNS physiology is exemplified by the peroxisome biogenesis disorders (PBDs), a spectrum of inherited disorders of peroxisome assembly and/or abundance, that are characterized in part by neurological manifestations ranging from severe cerebral malformations to vision and hearing loss, depending on the individual disorder. Recently, peroxisome dysfunction has been implicated in neurological diseases associated with neuroinflammation including Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Parkinson's disease while also contributing to the pathogenesis of neurotropic viruses including SARS-CoV-2, Human Pegivirus, HIV-1 and Zika virus. In the present review, we examine the diverse roles that peroxisomes serve in CNS health before reviewing more recent studies investigating peroxisome dysfunction in inflammatory brain disorders and also highlight potential peroxisomal targets for diagnostic biomarkers and therapeutic interventions.
过氧化物酶体是有膜包被的细胞器,在真核细胞中发挥一系列生理功能。在中枢神经系统(CNS)中,过氧化物酶体参与多种重要的稳态功能,包括但不限于活性氧信号传导和稳态;关键髓鞘成分(包括醚磷脂)的生成;神经保护因子二十二碳六烯酸的生物合成;神经毒性代谢物(如超长链脂肪酸)的分解;以及有趣的是,神经胶质细胞的激活和对炎症刺激的反应。事实上,过氧化物酶体在调节炎症反应中起关键作用,是线粒体抗病毒信号(MAVS)蛋白介导的感染反应的关键调节因子。过氧化物酶体生物合成障碍(PBDs)体现了过氧化物酶体在CNS生理学中的重要性,PBDs是一系列过氧化物酶体组装和/或丰度的遗传性疾病,部分特征是根据个体疾病不同,出现从严重脑畸形到视力和听力丧失等神经系统表现。最近,过氧化物酶体功能障碍与包括阿尔茨海默病、肌萎缩侧索硬化症、多发性硬化症和帕金森病在内的与神经炎症相关的神经疾病有关,同时也促成了包括严重急性呼吸综合征冠状病毒2(SARS-CoV-2)、人pegivirus、人类免疫缺陷病毒1型(HIV-1)和寨卡病毒在内的嗜神经病毒的发病机制。在本综述中,我们先研究过氧化物酶体在CNS健康中的多种作用,然后回顾最近关于炎症性脑疾病中过氧化物酶体功能障碍的研究,并强调诊断生物标志物和治疗干预的潜在过氧化物酶体靶点。