Suppr超能文献

纳米级加替沙星检测:探索当前生物传感技术及未来机遇的综述

Gatifloxacin detection in the nanoscale: a review exploring current biosensing technologies and future opportunities.

作者信息

Pious Nevil, Das Sudip, Chakravorty Arghya, Mini Aarcha Appu, Raghavan Vimala

机构信息

Centre for Nanotechnology Research, Vellore Institute of Technology Vellore Tamil Nadu 632014 India

出版信息

RSC Adv. 2025 Sep 12;15(40):33018-33045. doi: 10.1039/d5ra04732c. eCollection 2025 Sep 11.

Abstract

Addressing the United Nations Sustainable Development Goals (SDGs), particularly SDG 3 (good health and well-being), SDG 6 (clean water and sanitation), SDG 9 (industry, innovation, and infrastructure), and SDG 15 (life on land) necessitates robust and accessible diagnostic tools for effective healthcare management and combating global health threats. Antimicrobial resistance (AMR) poses a formidable challenge to global health, with fluoroquinolones, a critical class of broad-spectrum antibiotics, facing increasing resistance. Gatifloxacin, a widely used fourth-generation fluoroquinolone, is a prime example of a drug whose efficacy is threatened by emerging resistance mechanisms. This review delves into the growing concern of gatifloxacin resistance and highlights the urgent need for innovative strategies to combat this escalating public health crisis. The necessity of rigorous healthcare monitoring for fluoroquinolones, including precise Therapeutic Drug Monitoring (TDM), is emphasized to optimize patient outcomes and mitigate the development of further resistance. Traditional monitoring techniques, such as chromatography and immunoassay, while effective, often suffer from limitations in terms of cost, complexity, and real-time applicability for routine clinical settings. This review provides a comprehensive overview of the current landscape of gatifloxacin detection, focusing on the significant advancements in electrochemical and optical sensor technologies at the nanoscale. We critically evaluate the underlying principles, performance characteristics, and limitations of existing sensor platforms. Furthermore, a detailed analysis of prevailing research gaps is presented, specifically highlighting the nascent exploration of advanced biosensing platforms like immunosensors, aptasensors, and FET-based devices for gatifloxacin. The absence of integrated Lab-on-Chip, microfluidic, and MEMS-based solutions, alongside the underutilization of next-generation materials such as MXenes, Transition Metal Dichalcogenides (TMDs), and rare earth metal oxides, is critically discussed. The untapped potential of Artificial Intelligence and Machine Learning (AI/ML) integration for enhanced sensor performance and the glaring lack of clinically validated point-of-care (POC) devices for TDM, particularly those adhering to USFDA Bioanalytical Device guidelines, are identified as critical avenues for future research. This review concludes by outlining the future prospects for developing cutting-edge, nanotechnological biosensors that are sensitive, selective, rapid, and cost-effective, ultimately contributing to better management of gatifloxacin therapy and bolstering global efforts against antimicrobial resistance.

摘要

为实现联合国可持续发展目标(SDGs),特别是目标3(良好健康与福祉)、目标6(清洁饮水与卫生设施)、目标9(产业、创新和基础设施)以及目标15(陆地生物),需要强大且易于获取的诊断工具,以进行有效的医疗管理并应对全球健康威胁。抗菌药物耐药性(AMR)对全球健康构成了巨大挑战,作为一类关键的广谱抗生素,氟喹诺酮类药物面临着日益增加的耐药性。加替沙星是一种广泛使用的第四代氟喹诺酮类药物,其疗效正因新出现的耐药机制而受到威胁,就是一个典型例子。本综述深入探讨了对加替沙星耐药性日益增长的担忧,并强调迫切需要创新策略来应对这一不断升级的公共卫生危机。强调了对氟喹诺酮类药物进行严格医疗监测的必要性,包括精确的治疗药物监测(TDM),以优化患者治疗效果并减缓进一步耐药性的发展。传统监测技术,如色谱法和免疫测定法,虽然有效,但在成本、复杂性以及常规临床环境中的实时适用性方面往往存在局限性。本综述全面概述了加替沙星检测的当前状况,重点关注纳米级电化学和光学传感器技术的重大进展。我们批判性地评估了现有传感器平台的基本原理、性能特征和局限性。此外,还详细分析了当前存在的研究差距,特别强调了对用于加替沙星的免疫传感器、适体传感器和基于场效应晶体管(FET)的设备等先进生物传感平台的初步探索。文中批判性地讨论了缺乏集成的芯片实验室、微流控和基于微机电系统(MEMS)的解决方案,以及诸如MXenes、过渡金属二硫属化物(TMDs)和稀土金属氧化物等下一代材料未得到充分利用的情况。人工智能和机器学习(AI/ML)集成在提高传感器性能方面的未开发潜力,以及缺乏经过临床验证的用于TDM的即时检测(POC)设备,尤其是那些符合美国食品药品监督管理局(USFDA)生物分析设备指南的设备,被确定为未来研究的关键途径。本综述最后概述了开发前沿的、纳米技术的生物传感器的未来前景,这些生物传感器灵敏、选择性高、快速且具有成本效益,最终有助于更好地管理加替沙星治疗,并加强全球对抗菌药物耐药性的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dc3/12429174/300d7b2d6867/d5ra04732c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验